Show simple item record

contributor authorAltland, Samuel
contributor authorXu, Haosen H. A.
contributor authorYang, Xiang I. A.
contributor authorKunz, Robert
date accessioned2022-05-08T09:11:08Z
date available2022-05-08T09:11:08Z
date copyright2/16/2022 12:00:00 AM
date issued2022
identifier issn0098-2202
identifier otherfe_144_06_061106.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284828
description abstractFlow over arrays of cubes is an extensively studied model problem for rough wall turbulent boundary layers. While considerable research has been performed in computationally investigating these topologies using direct numerical simulation (DNS) and large eddy simulation (LES), the ability of sublayer-resolved Reynolds-averaged Navier–Stokes (RANS) to predict the bulk flow phenomena of these systems is relatively unexplored, especially at low and high packing densities. Here, RANS simulations are conducted on six different packing densities of cubes in aligned and staggered configurations. The packing densities investigated span from what would classically be defined as isolated, up to those in the d-type roughness regime, filling in the gap in the present literature. Three different sublayer-resolved turbulence closure models were tested for each case: a low Reynolds number k–ϵ model, the Menter k–ω SST model, and a full Reynolds stress model. Comparisons of the velocity fields, secondary flow features, and drag coefficients are made between the RANS results and existing LES and DNS results. There is a significant degree of variability in the performance of the various RANS models across all comparison metrics. However, the Reynolds stress model demonstrated the best accuracy in terms of the mean velocity profile as well as drag partition across the range of packing densities.
publisherThe American Society of Mechanical Engineers (ASME)
titleModeling of Cube Array Roughness: RANS, Large Eddy Simulation, and Direct Numerical Simulation
typeJournal Paper
journal volume144
journal issue6
journal titleJournal of Fluids Engineering
identifier doi10.1115/1.4053611
journal fristpage61106-1
journal lastpage61106-9
page9
treeJournal of Fluids Engineering:;2022:;volume( 144 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record