contributor author | Xu, Lei | |
contributor author | Rusak, Zvi | |
date accessioned | 2022-05-08T09:10:15Z | |
date available | 2022-05-08T09:10:15Z | |
date copyright | 1/12/2022 12:00:00 AM | |
date issued | 2022 | |
identifier issn | 0098-2202 | |
identifier other | fe_144_05_051302.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4284810 | |
description abstract | The linear stability of plane Poiseuille flow through a finite-length channel is studied. A weakly divergence-free basis finite element method with streamline upwind Petrov–Galerkin (SUPG) stabilization is used to formulate the weak form of the problem. The linear stability characteristics are studied under three possible inlet–outlet boundary conditions, and the corresponding perturbation kinetic energy transfer mechanisms are investigated. Active transfer of perturbation kinetic energy at the channel inlet and outlet, energy production due to convection and dissipation at the flow bulk provide a new perspective in understanding the distinct stability characteristics of plane Poiseuille flow under various boundary conditions. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | The Stability of Plane Poiseuille Flow in a Finite-Length Channel | |
type | Journal Paper | |
journal volume | 144 | |
journal issue | 5 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.4052643 | |
journal fristpage | 51302-1 | |
journal lastpage | 51302-10 | |
page | 10 | |
tree | Journal of Fluids Engineering:;2022:;volume( 144 ):;issue: 005 | |
contenttype | Fulltext | |