YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Contact Nonlinearity in Indenter–Foam Dampers

    Source: Journal of Vibration and Acoustics:;2022:;volume( 144 ):;issue: 005::page 51003-1
    Author:
    Liu, Lejie
    ,
    Yerrapragada, Karthik
    ,
    Henak, Corinne R.
    ,
    Eriten, Melih
    DOI: 10.1115/1.4054054
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, the nonlinear response of indenter–foam dampers is characterized. Those dampers consist of indenters pressed on open-cell foams swollen with wetting liquids. Recently, the authors identified the dominant mechanism of damping in those dampers as poro-viscoelastic (PVE) relaxations as in articular cartilage, one of nature’s best solutions to vibration attenuation. Those previous works by the authors included dynamic mechanical analyses of the indenter–foam dampers under small vibrations, i.e., linear regime. The current study features the dynamic response of similar dampers under larger strains to investigate the nonlinear regime. In particular, the indenter–foam dampers tested in this paper consist of an open-cell polyurethane foam swollen with castor oil. Harmonic displacements are applied on the swollen and pre-compressed foam using a flat-ended cylindrical indenter. Measured forces and corresponding hysteresis (force–displacement) loops are then analyzed to quantify damping performance (via specific damping capacity) and nonlinearities (via harmonic ratio). The effects of strain and strain rates on the damping capacity and harmonic ratio are investigated experimentally. The dominant source of the nonlinearity is identified as peeling at the indenter–foam interface (and quantified via peeling index). A representative model consisting of a linear viscoelastic foam and rate-dependent adhesive interface (slider element with limiting adhesive strength) explains the observed trends in peeling and thus nonlinear dynamic response. Possible remedies to suppress those nonlinearities in future designs of indenter–foam dampers are also discussed.
    • Download: (819.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Contact Nonlinearity in Indenter–Foam Dampers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284611
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorLiu, Lejie
    contributor authorYerrapragada, Karthik
    contributor authorHenak, Corinne R.
    contributor authorEriten, Melih
    date accessioned2022-05-08T09:00:08Z
    date available2022-05-08T09:00:08Z
    date copyright3/24/2022 12:00:00 AM
    date issued2022
    identifier issn1048-9002
    identifier othervib_144_5_051003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284611
    description abstractIn this paper, the nonlinear response of indenter–foam dampers is characterized. Those dampers consist of indenters pressed on open-cell foams swollen with wetting liquids. Recently, the authors identified the dominant mechanism of damping in those dampers as poro-viscoelastic (PVE) relaxations as in articular cartilage, one of nature’s best solutions to vibration attenuation. Those previous works by the authors included dynamic mechanical analyses of the indenter–foam dampers under small vibrations, i.e., linear regime. The current study features the dynamic response of similar dampers under larger strains to investigate the nonlinear regime. In particular, the indenter–foam dampers tested in this paper consist of an open-cell polyurethane foam swollen with castor oil. Harmonic displacements are applied on the swollen and pre-compressed foam using a flat-ended cylindrical indenter. Measured forces and corresponding hysteresis (force–displacement) loops are then analyzed to quantify damping performance (via specific damping capacity) and nonlinearities (via harmonic ratio). The effects of strain and strain rates on the damping capacity and harmonic ratio are investigated experimentally. The dominant source of the nonlinearity is identified as peeling at the indenter–foam interface (and quantified via peeling index). A representative model consisting of a linear viscoelastic foam and rate-dependent adhesive interface (slider element with limiting adhesive strength) explains the observed trends in peeling and thus nonlinear dynamic response. Possible remedies to suppress those nonlinearities in future designs of indenter–foam dampers are also discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleContact Nonlinearity in Indenter–Foam Dampers
    typeJournal Paper
    journal volume144
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4054054
    journal fristpage51003-1
    journal lastpage51003-9
    page9
    treeJournal of Vibration and Acoustics:;2022:;volume( 144 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian