YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment

    Source: Journal of Turbomachinery:;2021:;volume( 144 ):;issue: 005::page 51004-1
    Author:
    Mao, Shuo
    ,
    Sibold, Ridge
    ,
    Ng, Wing F.
    ,
    Li, Zhigang
    ,
    Bai, Bo
    ,
    Xu, Hongzhou
    ,
    Fox, Michael
    DOI: 10.1115/1.4052738
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A misalignment between the combustor exit and the nozzle guide vane (NGV) platform commonly exists due to manufacturing tolerances and thermal transience. This study investigated, experimentally and computationally, the effect of the combustor-turbine misalignment on the heat transfer for an axisymmetric converging endwall with a jet purge cooling scheme at transonic conditions. The studies were conducted at engine-representative Maexit = 0.85, inlet turbulence intensity of 16%, and Reexit,Cax = 1.5 × 106. A film cooling blowing ratio of 2.5 (design condition) and 3.5 and an engine-representative density ratio of 1.95 were used in the study. Three various step misalignments, combustor exit being 4.9% span higher than turbine inlet (backward-facing), no step (baseline), and combustor exit being 4.9% span lower than turbine inlet (forward-facing), were tested to demonstrate the misalignment effect on endwall heat transfer. Results indicated that the step misalignment affects the cooling performance by altering the interaction between the coolant and the cavity vortex, horseshoe vortex, and passage vortex. At the design blowing ratio of 2.5, the backward-facing step leads to increased coolant dissipation, causing the coolant to be later dominated by the passage vortex and leading to poor cooling performance. Meanwhile, a forward-facing step induced more coolant lift-off. At the blowing ratio of 3.5, the additional momentum ensures that enough coolant enters the passage to form a stable boundary layer. Therefore, the step misalignment no longer has a first-order effect.
    • Download: (1.079Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284509
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMao, Shuo
    contributor authorSibold, Ridge
    contributor authorNg, Wing F.
    contributor authorLi, Zhigang
    contributor authorBai, Bo
    contributor authorXu, Hongzhou
    contributor authorFox, Michael
    date accessioned2022-05-08T08:55:13Z
    date available2022-05-08T08:55:13Z
    date copyright11/17/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_144_5_051004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284509
    description abstractA misalignment between the combustor exit and the nozzle guide vane (NGV) platform commonly exists due to manufacturing tolerances and thermal transience. This study investigated, experimentally and computationally, the effect of the combustor-turbine misalignment on the heat transfer for an axisymmetric converging endwall with a jet purge cooling scheme at transonic conditions. The studies were conducted at engine-representative Maexit = 0.85, inlet turbulence intensity of 16%, and Reexit,Cax = 1.5 × 106. A film cooling blowing ratio of 2.5 (design condition) and 3.5 and an engine-representative density ratio of 1.95 were used in the study. Three various step misalignments, combustor exit being 4.9% span higher than turbine inlet (backward-facing), no step (baseline), and combustor exit being 4.9% span lower than turbine inlet (forward-facing), were tested to demonstrate the misalignment effect on endwall heat transfer. Results indicated that the step misalignment affects the cooling performance by altering the interaction between the coolant and the cavity vortex, horseshoe vortex, and passage vortex. At the design blowing ratio of 2.5, the backward-facing step leads to increased coolant dissipation, causing the coolant to be later dominated by the passage vortex and leading to poor cooling performance. Meanwhile, a forward-facing step induced more coolant lift-off. At the blowing ratio of 3.5, the additional momentum ensures that enough coolant enters the passage to form a stable boundary layer. Therefore, the step misalignment no longer has a first-order effect.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment
    typeJournal Paper
    journal volume144
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4052738
    journal fristpage51004-1
    journal lastpage51004-11
    page11
    treeJournal of Turbomachinery:;2021:;volume( 144 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian