YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microstructure of IN738LC Fabricated Using Laser Powder Bed Fusion Additive Manufacturing

    Source: Journal of Turbomachinery:;2021:;volume( 144 ):;issue: 003::page 31011-1
    Author:
    Menon, Nandana
    ,
    Mahdi, Tanjheel Hasan
    ,
    Basak, Amrita
    DOI: 10.1115/1.4052404
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (γ′ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small-scale businesses in fabricating high-γ′ nickel-base superalloys on a desktop laser powder bed fusion AM equipment.
    • Download: (1.460Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microstructure of IN738LC Fabricated Using Laser Powder Bed Fusion Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284488
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMenon, Nandana
    contributor authorMahdi, Tanjheel Hasan
    contributor authorBasak, Amrita
    date accessioned2022-05-08T08:54:12Z
    date available2022-05-08T08:54:12Z
    date copyright10/18/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_144_3_031011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284488
    description abstractNickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (γ′ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small-scale businesses in fabricating high-γ′ nickel-base superalloys on a desktop laser powder bed fusion AM equipment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMicrostructure of IN738LC Fabricated Using Laser Powder Bed Fusion Additive Manufacturing
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4052404
    journal fristpage31011-1
    journal lastpage31011-6
    page6
    treeJournal of Turbomachinery:;2021:;volume( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian