YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio

    Source: Journal of Turbomachinery:;2021:;volume( 144 ):;issue: 002::page 21011-1
    Author:
    Chen, I-Lun
    ,
    Sahin, Izzet
    ,
    Wright, Lesley M.
    ,
    Han, Je-Chin
    ,
    Krewinkel, Robert
    DOI: 10.1115/1.4052317
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study features a rotating, blade-shaped, two-pass cooling channel with a variable aspect ratio (AR). Internal cooling passages of modern gas turbine blades closely follow the shape and contour of the airfoils. Therefore, the cross section and the orientation with respect to rotation varies for each cooling channel. The effect of passage orientation on the heat transfer and pressure loss is investigated by comparing to a planar channel design with a similar geometry. Following the blade cross section, the first pass of the serpentine channel is angled at 50 deg from the direction of rotation while the second pass has an orientation angle of 105 deg. The coolant flows radially outward in the first passage with an AR = 4:1. After a 180-deg tip turn, the coolant travels radially inward into the second passage with AR = 2:1. The copper plate method is applied to obtain the regionally averaged heat transfer coefficients on all the interior walls of the cooling channel. In addition to the smooth surface case, 45 deg angled ribs with a profiled cross section are also placed on the leading and trailing surfaces in both the passages. The ribs are placed such that P/e = 10 and e/H = 0.16. The Reynolds number varies from 10,000 to 45,000 in the first passage and 16,000 to 73,000 in the second passage. The rotational speed ranges from 0 to 400 rpm, which corresponds to maximum rotation numbers of 0.38 and 0.15 in the first and second passes, respectively. The blade-shaped feature affects the heat transfer and pressure loss in the cooling channels. In the second passage, the heat transfer on the outer wall and trailing surface is higher than the inner wall and leading surface due to flow impingement and the swirling motion induced by the blade-shaped tip turn. The rotational effect on the heat transfer and pressure loss is lower in the blade-shaped design than the planar design due to the feature of angled rotation. The tip wall heat transfer is significantly enhanced by rotation in this study. The overall heat transfer and pressure loss in this study is higher than the planar geometry due to the blade-shaped feature. The heat transfer and pressure loss characteristics from this study provide important information for the gas turbine blade internal cooling designs.
    • Download: (2.372Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284479
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorChen, I-Lun
    contributor authorSahin, Izzet
    contributor authorWright, Lesley M.
    contributor authorHan, Je-Chin
    contributor authorKrewinkel, Robert
    date accessioned2022-05-08T08:53:53Z
    date available2022-05-08T08:53:53Z
    date copyright10/1/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_144_2_021011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284479
    description abstractThis study features a rotating, blade-shaped, two-pass cooling channel with a variable aspect ratio (AR). Internal cooling passages of modern gas turbine blades closely follow the shape and contour of the airfoils. Therefore, the cross section and the orientation with respect to rotation varies for each cooling channel. The effect of passage orientation on the heat transfer and pressure loss is investigated by comparing to a planar channel design with a similar geometry. Following the blade cross section, the first pass of the serpentine channel is angled at 50 deg from the direction of rotation while the second pass has an orientation angle of 105 deg. The coolant flows radially outward in the first passage with an AR = 4:1. After a 180-deg tip turn, the coolant travels radially inward into the second passage with AR = 2:1. The copper plate method is applied to obtain the regionally averaged heat transfer coefficients on all the interior walls of the cooling channel. In addition to the smooth surface case, 45 deg angled ribs with a profiled cross section are also placed on the leading and trailing surfaces in both the passages. The ribs are placed such that P/e = 10 and e/H = 0.16. The Reynolds number varies from 10,000 to 45,000 in the first passage and 16,000 to 73,000 in the second passage. The rotational speed ranges from 0 to 400 rpm, which corresponds to maximum rotation numbers of 0.38 and 0.15 in the first and second passes, respectively. The blade-shaped feature affects the heat transfer and pressure loss in the cooling channels. In the second passage, the heat transfer on the outer wall and trailing surface is higher than the inner wall and leading surface due to flow impingement and the swirling motion induced by the blade-shaped tip turn. The rotational effect on the heat transfer and pressure loss is lower in the blade-shaped design than the planar design due to the feature of angled rotation. The tip wall heat transfer is significantly enhanced by rotation in this study. The overall heat transfer and pressure loss in this study is higher than the planar geometry due to the blade-shaped feature. The heat transfer and pressure loss characteristics from this study provide important information for the gas turbine blade internal cooling designs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4052317
    journal fristpage21011-1
    journal lastpage21011-13
    page13
    treeJournal of Turbomachinery:;2021:;volume( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian