YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade

    Source: Journal of Turbomachinery:;2022:;volume( 144 ):;issue: 010::page 101008-1
    Author:
    Liu, Qiang
    ,
    Ager, Will
    ,
    Hall, Cesare
    ,
    Wheeler, Andrew P.S.
    DOI: 10.1115/1.4054148
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper investigates the surface boundary layer and wake development of a compressor blade at a range of low Reynolds number from 45,000 to 120,000. Experiments in a miniature linear compressor cascade facility have been performed with detailed surface pressure measurements and flow visualization to track variations in the separation bubble size. These have been combined with high-resolution pneumatic pressure and hot-wire probe traverses in the downstream wake. High-fidelity direct numerical simulations have been completed on the same compressor blade section across the same range of operating conditions. The results show that large laminar separation bubbles exist on both blade surfaces. As Reynolds number increases, these separation bubbles shorten in length and reduce in thickness. Correspondingly, the downstream wake narrows, although the peak wake loss coefficient remains approximately constant. As the Reynolds number is increased from 45,000 to 120,000, the bubble length on the suction side reduced from 48% to 28% chord and on the pressure side reduced from 35% to 20% chord, while the loss coefficient reduced from 9% to 5%. The flow features are examined further within the high-fidelity computations, which reveal the dependence of the wake turbulence on the laminar separation bubbles. The separation bubbles are found to generate turbulent kinetic energy, which convects downstream to form the outer part of wake. As Re increases, a shorter bubble produces less turbulence in the outer part of the boundary layer leading to a narrower wake. However, the trailing edge separation is largely independent of Reynolds number, leading to the constant peak loss coefficient observed. The overall loss is shown to vary linearly with the total turbulence production, and this depends on the size of the separation bubbles. Overall, this research provides new insight into the connection between the blade surface flow field and the wake characteristics at low Reynolds number. The findings suggest that changes that minimize the extent of the blade separation bubbles could provide significant improvements to both the steady and unsteady properties of the wake.
    • Download: (1.465Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284476
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorLiu, Qiang
    contributor authorAger, Will
    contributor authorHall, Cesare
    contributor authorWheeler, Andrew P.S.
    date accessioned2022-05-08T08:53:42Z
    date available2022-05-08T08:53:42Z
    date copyright4/19/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_144_10_101008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284476
    description abstractThis paper investigates the surface boundary layer and wake development of a compressor blade at a range of low Reynolds number from 45,000 to 120,000. Experiments in a miniature linear compressor cascade facility have been performed with detailed surface pressure measurements and flow visualization to track variations in the separation bubble size. These have been combined with high-resolution pneumatic pressure and hot-wire probe traverses in the downstream wake. High-fidelity direct numerical simulations have been completed on the same compressor blade section across the same range of operating conditions. The results show that large laminar separation bubbles exist on both blade surfaces. As Reynolds number increases, these separation bubbles shorten in length and reduce in thickness. Correspondingly, the downstream wake narrows, although the peak wake loss coefficient remains approximately constant. As the Reynolds number is increased from 45,000 to 120,000, the bubble length on the suction side reduced from 48% to 28% chord and on the pressure side reduced from 35% to 20% chord, while the loss coefficient reduced from 9% to 5%. The flow features are examined further within the high-fidelity computations, which reveal the dependence of the wake turbulence on the laminar separation bubbles. The separation bubbles are found to generate turbulent kinetic energy, which convects downstream to form the outer part of wake. As Re increases, a shorter bubble produces less turbulence in the outer part of the boundary layer leading to a narrower wake. However, the trailing edge separation is largely independent of Reynolds number, leading to the constant peak loss coefficient observed. The overall loss is shown to vary linearly with the total turbulence production, and this depends on the size of the separation bubbles. Overall, this research provides new insight into the connection between the blade surface flow field and the wake characteristics at low Reynolds number. The findings suggest that changes that minimize the extent of the blade separation bubbles could provide significant improvements to both the steady and unsteady properties of the wake.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLow Reynolds Number Effects on the Separation and Wake of a Compressor Blade
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4054148
    journal fristpage101008-1
    journal lastpage101008-10
    page10
    treeJournal of Turbomachinery:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian