YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Bioreactor for Controlled Electrical and Mechanical Stimulation of Developing Scaffold-Free Constructs

    Source: Journal of Biomechanical Engineering:;2022:;volume( 144 ):;issue: 009::page 94501-1
    Author:
    Van Houten, Sarah K.
    ,
    Bramson, Michael T. K.
    ,
    Corr, David T.
    DOI: 10.1115/1.4054021
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Bioreactors are commonly used to apply biophysically relevant stimulations to tissue-engineered constructs in order to explore how these stimuli influence tissue development, healing, and homeostasis, and they offer great flexibility because key features of the stimuli (e.g., duty cycle, frequency, amplitude, and duration) can be controlled to elicit a desired cellular response. However, most bioreactors that apply mechanical and electrical stimulations do so to a scaffold after the construct has developed, preventing study of the influence these stimuli have on early construct development. To enable such exploration, there is a need for a bioreactor that allows the direct application of mechanical and electrical stimulation to constructs as they develop. Herein, we develop and calibrate a bioreactor, based on our previously established modified Flexcell system, to deliver precise mechanical and electrical stimulation, either independently or in combination, to developing scaffold-free tissue constructs. Linear calibration curves were established, then used to apply precise dynamic mechanical and electrical stimulations, over a range of physiologically relevant strains (0.50%, 0.70%, 0.75%, 1.0%, and 1.5%) and voltages (1.5 and 3.5 V), respectively. Following calibration, applied mechanical and electrical stimulations were not statistically different from their desired target values and were consistent whether delivered independently or in combination. Concurrent delivery of mechanical and electrical stimulation resulted in a negligible change in mechanical (<
     
    2%) and electrical (<
     
    1%) values, compared to their independently delivered values. With this calibrated bioreactor, we can apply precise, controlled, reproducible mechanical and electrical stimulations, alone or in combination, to scaffold-free, tissue-engineered constructs as they develop.
     
    • Download: (2.334Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Bioreactor for Controlled Electrical and Mechanical Stimulation of Developing Scaffold-Free Constructs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284248
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorVan Houten, Sarah K.
    contributor authorBramson, Michael T. K.
    contributor authorCorr, David T.
    date accessioned2022-05-08T08:42:54Z
    date available2022-05-08T08:42:54Z
    date copyright3/30/2022 12:00:00 AM
    date issued2022
    identifier issn0148-0731
    identifier otherbio_144_09_094501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284248
    description abstractBioreactors are commonly used to apply biophysically relevant stimulations to tissue-engineered constructs in order to explore how these stimuli influence tissue development, healing, and homeostasis, and they offer great flexibility because key features of the stimuli (e.g., duty cycle, frequency, amplitude, and duration) can be controlled to elicit a desired cellular response. However, most bioreactors that apply mechanical and electrical stimulations do so to a scaffold after the construct has developed, preventing study of the influence these stimuli have on early construct development. To enable such exploration, there is a need for a bioreactor that allows the direct application of mechanical and electrical stimulation to constructs as they develop. Herein, we develop and calibrate a bioreactor, based on our previously established modified Flexcell system, to deliver precise mechanical and electrical stimulation, either independently or in combination, to developing scaffold-free tissue constructs. Linear calibration curves were established, then used to apply precise dynamic mechanical and electrical stimulations, over a range of physiologically relevant strains (0.50%, 0.70%, 0.75%, 1.0%, and 1.5%) and voltages (1.5 and 3.5 V), respectively. Following calibration, applied mechanical and electrical stimulations were not statistically different from their desired target values and were consistent whether delivered independently or in combination. Concurrent delivery of mechanical and electrical stimulation resulted in a negligible change in mechanical (<
    description abstract2%) and electrical (<
    description abstract1%) values, compared to their independently delivered values. With this calibrated bioreactor, we can apply precise, controlled, reproducible mechanical and electrical stimulations, alone or in combination, to scaffold-free, tissue-engineered constructs as they develop.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Bioreactor for Controlled Electrical and Mechanical Stimulation of Developing Scaffold-Free Constructs
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4054021
    journal fristpage94501-1
    journal lastpage94501-7
    page7
    treeJournal of Biomechanical Engineering:;2022:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian