contributor author | Nada, Ayat | |
contributor author | Fakhr, Mahmoud A. | |
contributor author | El-Wakad, Mohamed Tarek I. | |
contributor author | Hassan, Mohammed A. | |
date accessioned | 2022-05-08T08:39:45Z | |
date available | 2022-05-08T08:39:45Z | |
date copyright | 3/30/2022 12:00:00 AM | |
date issued | 2022 | |
identifier issn | 0148-0731 | |
identifier other | bio_144_09_091006.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4284181 | |
description abstract | This research aimed to examine the impact of a proposed flow stent (PFS) on different abdominal artery shapes. For that purpose, a finite element-based model using the computational fluid dynamics (CFD) method is developed. The effect of PFS intervention on the hemodynamic efficiency is estimated by all of the significant criteria used for the evaluation of aneurysm occlusion and possible rupture | |
description abstract | the flow velocity, pressure, wall shear stress (WSS), and WSS-related indices. Results showed that PFS intervention preserves the effects of high flowrate and decreases irregular flow recirculation in the sac of the aneurysm. The flow velocity reduction inside the aneurysm sac is in the range of 55% to 80% and the time-averaged wall shear stress (TAWSS) reduction is in the range of 42% to 53% by PFS deployment. The simulation results implies that PFS could heal an aneurysm efficiently with a mechanism that causes the development of thrombus and ultimately leads to aneurysm resorption. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Finite Element-Based Analysis of a Hemodynamics Efficient Flow Stent Suitable for Different Abdominal Aneurysm Shapes | |
type | Journal Paper | |
journal volume | 144 | |
journal issue | 9 | |
journal title | Journal of Biomechanical Engineering | |
identifier doi | 10.1115/1.4053999 | |
journal fristpage | 91006-1 | |
journal lastpage | 91006-9 | |
page | 9 | |
tree | Journal of Biomechanical Engineering:;2022:;volume( 144 ):;issue: 009 | |
contenttype | Fulltext | |