YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of the Creep Rupture Behavior of Alloy 690 Steam Generator Tubes Considering the Pressure Ramp Rate

    Source: Journal of Pressure Vessel Technology:;2021:;volume( 144 ):;issue: 001::page 11504-1
    Author:
    Kim, Jong-Min
    ,
    Kim, Min-Chul
    ,
    Kwon, Joon-Yeop
    DOI: 10.1115/1.4052450
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Steam generator tubes are among the main components that form the pressure boundary of a nuclear power plant and studies of ruptures of steam generator (SG) tubes are important because they can ensure the safety of a nuclear power plant in case of a severe accident. The materials used previously for SG tubes around the world have been replaced and will be replaced by Alloy 690 given its improved corrosion resistance relative to that of Alloy 600. However, studies of the high-temperature creep and creep-rupture characteristics of SG tubes made of Alloy 690 are insufficient compared to those focusing on Alloy 600. In this study, several creep tests were conducted using half-tube shape specimens of the Alloy 690 material at temperatures ranging from 650 °C to 850 °C and stresses in the range of 30–350 MPa, with failure times to creep rupture ranging from 3 h to 870 h. Based on the creep test results, creep life predictions were then made using the well-known Larson–Miller parameter (LMP) method. Steam generator tube rupture tests were also conducted under the conditions of a constant temperature and pressure ramp using SG tube specimens. As the pressure ramp rate increases, the failure behavior changes due to the rapid change in strain near the crack tip. The rupture test equipment was designed and manufactured to simulate the transient state (rapid temperature and pressure changes) in the event of a severe accident condition. After the rupture test, the damage to the SG tubes was predicted using a creep rupture model and a flow stress model. A modified creep rupture model for Alloy 690 SG tube material is proposed based on the experimental results. A correction factor of 1.7 in the modified creep rupture model was derived for the Alloy 690 material. The predicted failure pressure was in good agreement with the experimental failure pressure.
    • Download: (2.596Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of the Creep Rupture Behavior of Alloy 690 Steam Generator Tubes Considering the Pressure Ramp Rate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284110
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorKim, Jong-Min
    contributor authorKim, Min-Chul
    contributor authorKwon, Joon-Yeop
    date accessioned2022-05-08T08:34:59Z
    date available2022-05-08T08:34:59Z
    date copyright10/8/2021 12:00:00 AM
    date issued2021
    identifier issn0094-9930
    identifier otherpvt_144_01_011504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284110
    description abstractSteam generator tubes are among the main components that form the pressure boundary of a nuclear power plant and studies of ruptures of steam generator (SG) tubes are important because they can ensure the safety of a nuclear power plant in case of a severe accident. The materials used previously for SG tubes around the world have been replaced and will be replaced by Alloy 690 given its improved corrosion resistance relative to that of Alloy 600. However, studies of the high-temperature creep and creep-rupture characteristics of SG tubes made of Alloy 690 are insufficient compared to those focusing on Alloy 600. In this study, several creep tests were conducted using half-tube shape specimens of the Alloy 690 material at temperatures ranging from 650 °C to 850 °C and stresses in the range of 30–350 MPa, with failure times to creep rupture ranging from 3 h to 870 h. Based on the creep test results, creep life predictions were then made using the well-known Larson–Miller parameter (LMP) method. Steam generator tube rupture tests were also conducted under the conditions of a constant temperature and pressure ramp using SG tube specimens. As the pressure ramp rate increases, the failure behavior changes due to the rapid change in strain near the crack tip. The rupture test equipment was designed and manufactured to simulate the transient state (rapid temperature and pressure changes) in the event of a severe accident condition. After the rupture test, the damage to the SG tubes was predicted using a creep rupture model and a flow stress model. A modified creep rupture model for Alloy 690 SG tube material is proposed based on the experimental results. A correction factor of 1.7 in the modified creep rupture model was derived for the Alloy 690 material. The predicted failure pressure was in good agreement with the experimental failure pressure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of the Creep Rupture Behavior of Alloy 690 Steam Generator Tubes Considering the Pressure Ramp Rate
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4052450
    journal fristpage11504-1
    journal lastpage11504-10
    page10
    treeJournal of Pressure Vessel Technology:;2021:;volume( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian