YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coupled Dynamic Analysis of Hybrid Offshore Wind Turbine and Wave Energy Converter

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2021:;volume( 144 ):;issue: 003::page 32002-1
    Author:
    Rony, J.S.
    ,
    Karmakar, D.
    DOI: 10.1115/1.4052936
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The combined offshore wind and wave energy on an integrated platform is an economical solution for the offshore energy industry as they share the infrastructure and ocean space. The study presents the dynamic analysis of the Submerged Tension-Leg Platform (STLP) combined with a heaving-type point absorber wave energy converter (WEC). The feasibility study of the hybrid concept is performed using the aero-servo-hydro-elastic simulation tool FAST. The study analyzes the responses of the combined system to understand the influence of the WECs on the STLP platform for various operating conditions of the wind turbine under regular and irregular waves. Positive synergy is observed between the platform and the WECs, and the study also focuses on the forces and moments developed at the interface of the tower and platform to understand the effect of wind energy on the turbine tower and the importance of motion amplitudes on the performance of the combined platform system. The mean and standard deviation for the translation and rotational motions of combined wind and wave energy converters are determined for different sea states under both regular and irregular waves to analyze the change in responses of the structure. The study observed a reduction in motion amplitudes of the hybrid floating system with the addition of the wave energy converters around the STLP floater to improve the energy efficiency of the hybrid system. The study helps in understanding the best possible arrangement of point absorber-type wave energy converters at the conceptual stage of the design process.
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coupled Dynamic Analysis of Hybrid Offshore Wind Turbine and Wave Energy Converter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284093
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorRony, J.S.
    contributor authorKarmakar, D.
    date accessioned2022-05-08T08:34:13Z
    date available2022-05-08T08:34:13Z
    date copyright12/27/2021 12:00:00 AM
    date issued2021
    identifier issn0892-7219
    identifier otheromae_144_3_032002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284093
    description abstractThe combined offshore wind and wave energy on an integrated platform is an economical solution for the offshore energy industry as they share the infrastructure and ocean space. The study presents the dynamic analysis of the Submerged Tension-Leg Platform (STLP) combined with a heaving-type point absorber wave energy converter (WEC). The feasibility study of the hybrid concept is performed using the aero-servo-hydro-elastic simulation tool FAST. The study analyzes the responses of the combined system to understand the influence of the WECs on the STLP platform for various operating conditions of the wind turbine under regular and irregular waves. Positive synergy is observed between the platform and the WECs, and the study also focuses on the forces and moments developed at the interface of the tower and platform to understand the effect of wind energy on the turbine tower and the importance of motion amplitudes on the performance of the combined platform system. The mean and standard deviation for the translation and rotational motions of combined wind and wave energy converters are determined for different sea states under both regular and irregular waves to analyze the change in responses of the structure. The study observed a reduction in motion amplitudes of the hybrid floating system with the addition of the wave energy converters around the STLP floater to improve the energy efficiency of the hybrid system. The study helps in understanding the best possible arrangement of point absorber-type wave energy converters at the conceptual stage of the design process.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCoupled Dynamic Analysis of Hybrid Offshore Wind Turbine and Wave Energy Converter
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4052936
    journal fristpage32002-1
    journal lastpage32002-13
    page13
    treeJournal of Offshore Mechanics and Arctic Engineering:;2021:;volume( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian