YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hybrid Nodal Integral/Finite Element Method for Time-Dependent Convection Diffusion Equation

    Source: Journal of Nuclear Engineering and Radiation Science:;2022:;volume( 008 ):;issue: 002::page 21406-1
    Author:
    Namala, Sundar
    ,
    Uddin, Rizwan
    DOI: 10.1115/1.4051928
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). These ODEs or their approximations are analytically solved. These analytical solutions are used to then develop the numerical scheme. Transverse averaging is an essential step in the development of NIM, and hence the standard application of this approach gets restricted to domains that have boundaries parallel to one of the coordinate axes (in 2D) or coordinate planes (in 3D). The hybrid nodal-integral/finite element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. Since the discrete variables in the two numerical approaches are different, this requires special treatment of the discrete quantities on the interface between the two different types of discretized elements. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. The resulting hybrid numerical scheme is implemented in a parallel framework in fortran and solved using portable, extensible toolkit for scientific computation (PETSc). The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second-order accurate in both space and time. The order of approximations used for the development of the scheme is also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.
    • Download: (3.134Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hybrid Nodal Integral/Finite Element Method for Time-Dependent Convection Diffusion Equation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284030
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorNamala, Sundar
    contributor authorUddin, Rizwan
    date accessioned2022-05-08T08:31:14Z
    date available2022-05-08T08:31:14Z
    date copyright1/12/2022 12:00:00 AM
    date issued2022
    identifier issn2332-8983
    identifier otherners_008_02_021406.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284030
    description abstractNodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). These ODEs or their approximations are analytically solved. These analytical solutions are used to then develop the numerical scheme. Transverse averaging is an essential step in the development of NIM, and hence the standard application of this approach gets restricted to domains that have boundaries parallel to one of the coordinate axes (in 2D) or coordinate planes (in 3D). The hybrid nodal-integral/finite element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. Since the discrete variables in the two numerical approaches are different, this requires special treatment of the discrete quantities on the interface between the two different types of discretized elements. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. The resulting hybrid numerical scheme is implemented in a parallel framework in fortran and solved using portable, extensible toolkit for scientific computation (PETSc). The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second-order accurate in both space and time. The order of approximations used for the development of the scheme is also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHybrid Nodal Integral/Finite Element Method for Time-Dependent Convection Diffusion Equation
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4051928
    journal fristpage21406-1
    journal lastpage21406-13
    page13
    treeJournal of Nuclear Engineering and Radiation Science:;2022:;volume( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian