YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion

    Source: Journal of Mechanical Design:;2021:;volume( 144 ):;issue: 005::page 51705-1
    Author:
    Behtash, Mohammad
    ,
    Alexander-Ramos, Michael J.
    DOI: 10.1115/1.4052906
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Combined plant and control design (control co-design (CCD)) methods are often used during product development to address the synergistic coupling between the plant and control parts of a dynamic system. Recently, a few studies have started applying CCD to stochastic dynamic systems. In their most rigorous approach, reliability-based design optimization (RBDO) principles have been used to ensure solution feasibility under uncertainty. However, since existing reliability-based CCD (RBCCD) algorithms use all-at-once formulations, only most-probable-point (MPP) methods can be used as reliability analysis techniques. Though effective for linear/quadratic RBCCD problems, the use of such methods for highly nonlinear RBCCD problems introduces solution error that could lead to system failure. A multidisciplinary feasible (MDF) formulation for RBCCD problems would eliminate this issue by removing the dynamic equality constraints and instead enforcing them through forward simulation. Since the RBCCD problem structure would be similar to traditional RBDO problems, any of the well-established reliability analysis methods could be used. Therefore, in this work, a novel reliability-based MDF formulation of multidisciplinary dynamic system design optimization has been proposed for RBCCD. To quantify the uncertainty propagated by the random decision variables, Monte Carlo simulation has been applied to the generalized polynomial chaos expansion of the probabilistic constraints. The proposed formulation is applied to two engineering test problems, with the results indicating the effectiveness of both the overall formulation as well as the reliability analysis technique for RBCCD.
    • Download: (505.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283941
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorBehtash, Mohammad
    contributor authorAlexander-Ramos, Michael J.
    date accessioned2022-05-08T08:27:15Z
    date available2022-05-08T08:27:15Z
    date copyright12/8/2021 12:00:00 AM
    date issued2021
    identifier issn1050-0472
    identifier othermd_144_5_051705.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283941
    description abstractCombined plant and control design (control co-design (CCD)) methods are often used during product development to address the synergistic coupling between the plant and control parts of a dynamic system. Recently, a few studies have started applying CCD to stochastic dynamic systems. In their most rigorous approach, reliability-based design optimization (RBDO) principles have been used to ensure solution feasibility under uncertainty. However, since existing reliability-based CCD (RBCCD) algorithms use all-at-once formulations, only most-probable-point (MPP) methods can be used as reliability analysis techniques. Though effective for linear/quadratic RBCCD problems, the use of such methods for highly nonlinear RBCCD problems introduces solution error that could lead to system failure. A multidisciplinary feasible (MDF) formulation for RBCCD problems would eliminate this issue by removing the dynamic equality constraints and instead enforcing them through forward simulation. Since the RBCCD problem structure would be similar to traditional RBDO problems, any of the well-established reliability analysis methods could be used. Therefore, in this work, a novel reliability-based MDF formulation of multidisciplinary dynamic system design optimization has been proposed for RBCCD. To quantify the uncertainty propagated by the random decision variables, Monte Carlo simulation has been applied to the generalized polynomial chaos expansion of the probabilistic constraints. The proposed formulation is applied to two engineering test problems, with the results indicating the effectiveness of both the overall formulation as well as the reliability analysis technique for RBCCD.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
    typeJournal Paper
    journal volume144
    journal issue5
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4052906
    journal fristpage51705-1
    journal lastpage51705-11
    page11
    treeJournal of Mechanical Design:;2021:;volume( 144 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian