YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical and Microstructural Performance Evaluation of Diffusion Bonded Alloy 800H for Very High Temperature Nuclear Service

    Source: Journal of Engineering Materials and Technology:;2021:;volume( 144 ):;issue: 002::page 21008-1
    Author:
    Mahajan, Heramb P.
    ,
    Lima, Lucas M. A.
    ,
    Hassan, Tasnim
    DOI: 10.1115/1.4052825
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Very high temperature reactors (VHTRs) are planned to be operated between 550 and 950∘C and demand a thermally efficient intermediate heat exchanger (IHX) in the heat transport system (HTS). The current technological development of compact heat exchangers (CHXs) for VHTRs is at the “proof of concept” level. A significant development in the CHX technologies is essential for the VHTRs to be efficient, cost-effective, and safe. CHXs have very high thermal efficiency and compactness, making them a prime candidate for IHXs in VHTRs. Photochemically etched plates with the desired channel pattern are stacked and diffusion bonded to fabricate CHXs. All plates are compressed at an elevated temperature over a specified period in the diffusion bonding process, promoting atomic diffusion and grain growth across bond surfaces resulting in a monolithic block. The diffusion bonding process changes the base metal properties, which are unknown for Alloy 800H, a candidate alloy for CHX construction. Hence, developing mechanical response data and understanding failure mechanisms of diffusion bonded Alloy 800H at elevated temperatures is a key step for advancing the technology of IHXs in VHTRs. The ultimate goal of this study is to develop ASME BPVC Section III, Division 5 design rules for CHXs in nuclear service. Toward this goal, mechanical performance and microstructures of diffusion bonded Alloy 800H are investigated through a series of tensile, fatigue, creep, and creep-fatigue tests at temperatures 550 to 760∘C. The test results, failure mechanisms, and microstructures of diffusion bonded Alloy 800H are scrutinized and presented.
    • Download: (1.722Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical and Microstructural Performance Evaluation of Diffusion Bonded Alloy 800H for Very High Temperature Nuclear Service

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283882
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorMahajan, Heramb P.
    contributor authorLima, Lucas M. A.
    contributor authorHassan, Tasnim
    date accessioned2022-05-08T08:24:03Z
    date available2022-05-08T08:24:03Z
    date copyright11/23/2021 12:00:00 AM
    date issued2021
    identifier issn0094-4289
    identifier othermats_144_2_021008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283882
    description abstractVery high temperature reactors (VHTRs) are planned to be operated between 550 and 950∘C and demand a thermally efficient intermediate heat exchanger (IHX) in the heat transport system (HTS). The current technological development of compact heat exchangers (CHXs) for VHTRs is at the “proof of concept” level. A significant development in the CHX technologies is essential for the VHTRs to be efficient, cost-effective, and safe. CHXs have very high thermal efficiency and compactness, making them a prime candidate for IHXs in VHTRs. Photochemically etched plates with the desired channel pattern are stacked and diffusion bonded to fabricate CHXs. All plates are compressed at an elevated temperature over a specified period in the diffusion bonding process, promoting atomic diffusion and grain growth across bond surfaces resulting in a monolithic block. The diffusion bonding process changes the base metal properties, which are unknown for Alloy 800H, a candidate alloy for CHX construction. Hence, developing mechanical response data and understanding failure mechanisms of diffusion bonded Alloy 800H at elevated temperatures is a key step for advancing the technology of IHXs in VHTRs. The ultimate goal of this study is to develop ASME BPVC Section III, Division 5 design rules for CHXs in nuclear service. Toward this goal, mechanical performance and microstructures of diffusion bonded Alloy 800H are investigated through a series of tensile, fatigue, creep, and creep-fatigue tests at temperatures 550 to 760∘C. The test results, failure mechanisms, and microstructures of diffusion bonded Alloy 800H are scrutinized and presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanical and Microstructural Performance Evaluation of Diffusion Bonded Alloy 800H for Very High Temperature Nuclear Service
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4052825
    journal fristpage21008-1
    journal lastpage21008-11
    page11
    treeJournal of Engineering Materials and Technology:;2021:;volume( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian