YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Frequency Induction-Assisted Hybrid Friction Stir Welding of Inconel 718 Plates

    Source: Journal of Manufacturing Science and Engineering:;2021:;volume( 144 ):;issue: 004::page 41014-1
    Author:
    Raj, Sanjay
    ,
    Biswas, Pankaj
    DOI: 10.1115/1.4052357
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The preheating system is a promising approach to decrease the axial load, improve the weld quality, and enhance the tool life during the friction stir welding (FSW) of high strength material. In the present work, conventional FSW and high-frequency induction heating-assisted friction stir welding (I-FSW) systems were used to join 3 mm thick Inconel 718 plates with a WC-10%Co tool and studied their performances. The welding was carried out at a constant rotational speed of 300 rpm, including varying traverse speeds of 90 mm/min and 140 mm/min and varying preheating temperatures (310 °C, 410 °C, and 700 °C). The results show that good weld joints were possible at high traverse speed (i.e., 140 mm/min) using the I-FSW at low preheating temperature (i.e., 310 °C). Grain refinement in the weld zone with and without preheated FSW led to improved mechanical properties. The increased size of intermetallic phases and carbide particles due to induction preheating in I-FSW was most likely to be responsible for the enhancement of the weld strength. The hardness of the stir zone was increased from 250 HV to 370 HV, and the ultimate tensile strength of the I-FSW joint reaches 740 MPa, which was 98.8% of the base material. The results also revealed that preheating affected the process temperature results lowering the axial force and frictional heat, which improved the tool life.
    • Download: (2.923Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Frequency Induction-Assisted Hybrid Friction Stir Welding of Inconel 718 Plates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283797
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorRaj, Sanjay
    contributor authorBiswas, Pankaj
    date accessioned2022-05-08T08:19:15Z
    date available2022-05-08T08:19:15Z
    date copyright10/19/2021 12:00:00 AM
    date issued2021
    identifier issn1087-1357
    identifier othermanu_144_4_041014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283797
    description abstractThe preheating system is a promising approach to decrease the axial load, improve the weld quality, and enhance the tool life during the friction stir welding (FSW) of high strength material. In the present work, conventional FSW and high-frequency induction heating-assisted friction stir welding (I-FSW) systems were used to join 3 mm thick Inconel 718 plates with a WC-10%Co tool and studied their performances. The welding was carried out at a constant rotational speed of 300 rpm, including varying traverse speeds of 90 mm/min and 140 mm/min and varying preheating temperatures (310 °C, 410 °C, and 700 °C). The results show that good weld joints were possible at high traverse speed (i.e., 140 mm/min) using the I-FSW at low preheating temperature (i.e., 310 °C). Grain refinement in the weld zone with and without preheated FSW led to improved mechanical properties. The increased size of intermetallic phases and carbide particles due to induction preheating in I-FSW was most likely to be responsible for the enhancement of the weld strength. The hardness of the stir zone was increased from 250 HV to 370 HV, and the ultimate tensile strength of the I-FSW joint reaches 740 MPa, which was 98.8% of the base material. The results also revealed that preheating affected the process temperature results lowering the axial force and frictional heat, which improved the tool life.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHigh-Frequency Induction-Assisted Hybrid Friction Stir Welding of Inconel 718 Plates
    typeJournal Paper
    journal volume144
    journal issue4
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4052357
    journal fristpage41014-1
    journal lastpage41014-15
    page15
    treeJournal of Manufacturing Science and Engineering:;2021:;volume( 144 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian