YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Settlement and Horizontal Earth Pressure behind Model Integral Bridge Abutment Induced by Simulated Seasonal Temperature Change

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022043
    Author:
    Hao Liu
    ,
    Jie Han
    ,
    Robert L. Parsons
    DOI: 10.1061/(ASCE)GT.1943-5606.0002812
    Publisher: ASCE
    Abstract: Expansion and contraction of an integral abutment bridge cause an abutment to move toward and away from its backfill due to seasonal temperature changes, thus causing high horizontal earth pressures behind the abutment and backfill surface settlements. This paper presents the results of four model tests conducted to simulate both translational and rotational movements of abutments and investigate horizontal earth pressures behind the abutment and the backfill surface settlements. The test results showed that the translational movement of the abutment likely prevented soil ratcheting from occurring in the upper portion of the backfill due to stress adjustments in the backfill after simulated seasonal temperature changes (i.e., causing limited earth pressure increase behind the abutment). Furthermore, the existing methods used to predict the horizontal earth pressures behind the abutment overestimated the pressures at the bottom of the abutment if the translational movement of the abutment was permitted. In addition, the backfill surface settlement near the abutment, induced by the seasonal temperature changes, was a function of footing rigidity and the displacement magnitude of the abutment and continued even after 30 cycles of abutment movement.
    • Download: (1.601Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Settlement and Horizontal Earth Pressure behind Model Integral Bridge Abutment Induced by Simulated Seasonal Temperature Change

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283638
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorHao Liu
    contributor authorJie Han
    contributor authorRobert L. Parsons
    date accessioned2022-05-07T21:22:01Z
    date available2022-05-07T21:22:01Z
    date issued2022-04-11
    identifier other(ASCE)GT.1943-5606.0002812.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283638
    description abstractExpansion and contraction of an integral abutment bridge cause an abutment to move toward and away from its backfill due to seasonal temperature changes, thus causing high horizontal earth pressures behind the abutment and backfill surface settlements. This paper presents the results of four model tests conducted to simulate both translational and rotational movements of abutments and investigate horizontal earth pressures behind the abutment and the backfill surface settlements. The test results showed that the translational movement of the abutment likely prevented soil ratcheting from occurring in the upper portion of the backfill due to stress adjustments in the backfill after simulated seasonal temperature changes (i.e., causing limited earth pressure increase behind the abutment). Furthermore, the existing methods used to predict the horizontal earth pressures behind the abutment overestimated the pressures at the bottom of the abutment if the translational movement of the abutment was permitted. In addition, the backfill surface settlement near the abutment, induced by the seasonal temperature changes, was a function of footing rigidity and the displacement magnitude of the abutment and continued even after 30 cycles of abutment movement.
    publisherASCE
    titleSettlement and Horizontal Earth Pressure behind Model Integral Bridge Abutment Induced by Simulated Seasonal Temperature Change
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002812
    journal fristpage04022043
    journal lastpage04022043-13
    page13
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian