YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Curved Strain Wedge Analysis of Laterally Loaded Flexible Piles in Various Soil Types

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022037
    Author:
    Fan Zhang
    ,
    Guoliang Dai
    ,
    Weiming Gong
    ,
    Jinhao Liu
    DOI: 10.1061/(ASCE)GT.1943-5606.0002802
    Publisher: ASCE
    Abstract: This paper establishes an approximate circular cone strain wedge model and proposes an analytical method that can effectively connect practice with theory for the behavior of laterally loaded flexible piles with both free-head and fixed-head conditions in various types of soil based on the real shape of the strain wedge. The analytical method of the curved strain wedge model, in which the Duncan-Chang model is used to describe the stress-strain relationship of the soil and the relationship between the shear strain γ and the horizontal strain ε is improved on the basis of the Mohr circle of strain, is applicable to clay and sand as well as c-φ soil. A method of calculating the shear stress along the pile is proposed for circular piles according to the friction direction between the pile and the surrounding soil. The modulus of the soil foundation reaction is calculated along the whole pile length based on the finite-difference method, without calculating the height of the strain wedge, which can truly reflect the nonlinear deformation characteristics of the pile foundation under lateral loading. The proposed method is verified by six case studies, including five field measurement experiments for various types of soil and one finite-element analysis. Comparisons show that the agreement between the results from the curved strain wedge method and those from the field tests and the finite element analysis is generally satisfactory.
    • Download: (748.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Curved Strain Wedge Analysis of Laterally Loaded Flexible Piles in Various Soil Types

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283632
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorFan Zhang
    contributor authorGuoliang Dai
    contributor authorWeiming Gong
    contributor authorJinhao Liu
    date accessioned2022-05-07T21:21:44Z
    date available2022-05-07T21:21:44Z
    date issued2022-03-26
    identifier other(ASCE)GT.1943-5606.0002802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283632
    description abstractThis paper establishes an approximate circular cone strain wedge model and proposes an analytical method that can effectively connect practice with theory for the behavior of laterally loaded flexible piles with both free-head and fixed-head conditions in various types of soil based on the real shape of the strain wedge. The analytical method of the curved strain wedge model, in which the Duncan-Chang model is used to describe the stress-strain relationship of the soil and the relationship between the shear strain γ and the horizontal strain ε is improved on the basis of the Mohr circle of strain, is applicable to clay and sand as well as c-φ soil. A method of calculating the shear stress along the pile is proposed for circular piles according to the friction direction between the pile and the surrounding soil. The modulus of the soil foundation reaction is calculated along the whole pile length based on the finite-difference method, without calculating the height of the strain wedge, which can truly reflect the nonlinear deformation characteristics of the pile foundation under lateral loading. The proposed method is verified by six case studies, including five field measurement experiments for various types of soil and one finite-element analysis. Comparisons show that the agreement between the results from the curved strain wedge method and those from the field tests and the finite element analysis is generally satisfactory.
    publisherASCE
    titleCurved Strain Wedge Analysis of Laterally Loaded Flexible Piles in Various Soil Types
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002802
    journal fristpage04022037
    journal lastpage04022037-11
    page11
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian