YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Determination of Soil Sorptive Potential by Soil Water Isotherm

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022033
    Author:
    Shengmin Luo
    ,
    Ning Lu
    ,
    Yi Dong
    DOI: 10.1061/(ASCE)GT.1943-5606.0002795
    Publisher: ASCE
    Abstract: Soil sorptive potential (SSP) has recently been conceptualized as the sum of four known electromagnetic potentials in soil: cation and surface hydration, van der Waals attraction, electrical attraction, and osmosis due to electrical double layer. The SSP is most pronounced near the soil particle or intracrystalline surface and rapidly decays with increasing distance therefrom, governing the highly spatially varying characteristics of many fundamental soil properties such as pore water pressure, soil water density (SWD), and soil water phase transition. A novel framework was developed to determine the functions of SSP and SWD, directly using the experimental soil water isotherm (SWI) data with the aid of closed-form SWI and SWD models. A wide spectrum of soil types was examined to validate the proposed framework. Results indicate that the SSP in these soils can vary up to six orders of magnitude within the first three layers of adsorbed water molecules, leading to abnormally high values in both water pressure (∼103  MPa) and SWD (1.26  g/cm3) at the soil–water interface. The predicted SWD curves are comparable to the existing experimental SWD measurements, and the controlling parameters for the SSP calibrated by the predicted SSP curves also show good agreement with the values reported in the literature, all confirming the validity of the proposed framework. It is concluded that soil sorptive potential and soil water density functions can be reliably determined from soil water isotherm data.
    • Download: (2.091Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Determination of Soil Sorptive Potential by Soil Water Isotherm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283625
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorShengmin Luo
    contributor authorNing Lu
    contributor authorYi Dong
    date accessioned2022-05-07T21:21:20Z
    date available2022-05-07T21:21:20Z
    date issued2022-03-23
    identifier other(ASCE)GT.1943-5606.0002795.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283625
    description abstractSoil sorptive potential (SSP) has recently been conceptualized as the sum of four known electromagnetic potentials in soil: cation and surface hydration, van der Waals attraction, electrical attraction, and osmosis due to electrical double layer. The SSP is most pronounced near the soil particle or intracrystalline surface and rapidly decays with increasing distance therefrom, governing the highly spatially varying characteristics of many fundamental soil properties such as pore water pressure, soil water density (SWD), and soil water phase transition. A novel framework was developed to determine the functions of SSP and SWD, directly using the experimental soil water isotherm (SWI) data with the aid of closed-form SWI and SWD models. A wide spectrum of soil types was examined to validate the proposed framework. Results indicate that the SSP in these soils can vary up to six orders of magnitude within the first three layers of adsorbed water molecules, leading to abnormally high values in both water pressure (∼103  MPa) and SWD (1.26  g/cm3) at the soil–water interface. The predicted SWD curves are comparable to the existing experimental SWD measurements, and the controlling parameters for the SSP calibrated by the predicted SSP curves also show good agreement with the values reported in the literature, all confirming the validity of the proposed framework. It is concluded that soil sorptive potential and soil water density functions can be reliably determined from soil water isotherm data.
    publisherASCE
    titleDetermination of Soil Sorptive Potential by Soil Water Isotherm
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002795
    journal fristpage04022033
    journal lastpage04022033-13
    page13
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian