YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy-Based Assessment of Liquefaction Resistance of Rooted Soil

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 148 ):;issue: 001::page 06021016
    Author:
    Ali Akbar Karimzadeh
    ,
    Anthony Kwan Leung
    ,
    Pedram Fardad Amini
    DOI: 10.1061/(ASCE)GT.1943-5606.0002717
    Publisher: ASCE
    Abstract: Plant roots have been shown to improve the soil resistance to liquefaction upon cyclic loading. However, the effect of roots and their orientations on any changes in soil anisotropy and the mechanisms of dissipated energy involved at liquefaction state are not clear. This study applied the energy-based method to evaluate the liquefaction behavior of rooted soils of varying root volume ratios (RVRs). Results of 12 undrained cyclic triaxial tests on rooted soils published in the literature were reinterpreted under this energy framework. The assessment showed that the normalized cumulative dissipated energy (∑ΔW/σc′, where σc′ is the effective confining pressure) of rooted soil at liquefaction state can be related to the cyclic resistance ratio at 15 cycles (CRR15). It was discovered that roots that were predominantly orientated in the direction perpendicular to the major principal stress of extension path reduced soil anisotropy. Additionally, the ∑ΔW/σc′ was linearly correlated with the normalized cumulative strain energy (∑4W/σc′) with a gradient of approximately 2, which implies that any recycling and recovering of strain energy was minimal in rooted soils.
    • Download: (693.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy-Based Assessment of Liquefaction Resistance of Rooted Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283555
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorAli Akbar Karimzadeh
    contributor authorAnthony Kwan Leung
    contributor authorPedram Fardad Amini
    date accessioned2022-05-07T21:18:00Z
    date available2022-05-07T21:18:00Z
    date issued2021-10-21
    identifier other(ASCE)GT.1943-5606.0002717.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283555
    description abstractPlant roots have been shown to improve the soil resistance to liquefaction upon cyclic loading. However, the effect of roots and their orientations on any changes in soil anisotropy and the mechanisms of dissipated energy involved at liquefaction state are not clear. This study applied the energy-based method to evaluate the liquefaction behavior of rooted soils of varying root volume ratios (RVRs). Results of 12 undrained cyclic triaxial tests on rooted soils published in the literature were reinterpreted under this energy framework. The assessment showed that the normalized cumulative dissipated energy (∑ΔW/σc′, where σc′ is the effective confining pressure) of rooted soil at liquefaction state can be related to the cyclic resistance ratio at 15 cycles (CRR15). It was discovered that roots that were predominantly orientated in the direction perpendicular to the major principal stress of extension path reduced soil anisotropy. Additionally, the ∑ΔW/σc′ was linearly correlated with the normalized cumulative strain energy (∑4W/σc′) with a gradient of approximately 2, which implies that any recycling and recovering of strain energy was minimal in rooted soils.
    publisherASCE
    titleEnergy-Based Assessment of Liquefaction Resistance of Rooted Soil
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002717
    journal fristpage06021016
    journal lastpage06021016-5
    page5
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian