YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Centrifuge Shake Table Tests on the Liquefaction Resistance of Sand with Clayey Fines

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 148 ):;issue: 002::page 04021180
    Author:
    Xiaoqiang Gu
    ,
    Deshun Wu
    ,
    Kangle Zuo
    ,
    Anthony Tessari
    DOI: 10.1061/(ASCE)GT.1943-5606.0002708
    Publisher: ASCE
    Abstract: A series of centrifuge shake table tests were carried out to investigate liquefaction resistance of sand deposits with different fines content. The effects of clayey fines on the generation and dissipation of excess pore water pressure, acceleration record, surface settlement, and stress-strain behavior were investigated. It was found that for the same initial relative density, liquefaction resistance increased as fines content increased from 0% to 10% and then decreased with a further increase in fines content from 10% to 20% in the centrifuge tests. For all tests, a reduced acceleration within the soil was observed after a certain number of cycles due to the onset of liquefaction. Dilative tendencies are different for all tests, but the sand with 10% clay test showed the most obvious dilative behavior during the cyclic mobility stage. The total ground surface settlement and the time for a complete dissipation of excess pore water pressure increased with increasing fines content. Shear strains in the sand deposits increased as the clay content increased from 0% to 20%. Moreover, cone penetration tests were performed before and after shaking to study the effect of fines on penetration resistance. At the same depth across all tests, the penetration resistance before shaking decreased with increasing clay content. However, the penetration resistance after shaking increased with increasing clay content from 0% to 10% and then decreased with increasing clay content from 10% to 20%. When compared with the before-shaking profile, the percentage change in penetration resistance after shaking increased with clay content at the same depth.
    • Download: (1.932Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Centrifuge Shake Table Tests on the Liquefaction Resistance of Sand with Clayey Fines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283547
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorXiaoqiang Gu
    contributor authorDeshun Wu
    contributor authorKangle Zuo
    contributor authorAnthony Tessari
    date accessioned2022-05-07T21:17:30Z
    date available2022-05-07T21:17:30Z
    date issued2021-11-27
    identifier other(ASCE)GT.1943-5606.0002708.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283547
    description abstractA series of centrifuge shake table tests were carried out to investigate liquefaction resistance of sand deposits with different fines content. The effects of clayey fines on the generation and dissipation of excess pore water pressure, acceleration record, surface settlement, and stress-strain behavior were investigated. It was found that for the same initial relative density, liquefaction resistance increased as fines content increased from 0% to 10% and then decreased with a further increase in fines content from 10% to 20% in the centrifuge tests. For all tests, a reduced acceleration within the soil was observed after a certain number of cycles due to the onset of liquefaction. Dilative tendencies are different for all tests, but the sand with 10% clay test showed the most obvious dilative behavior during the cyclic mobility stage. The total ground surface settlement and the time for a complete dissipation of excess pore water pressure increased with increasing fines content. Shear strains in the sand deposits increased as the clay content increased from 0% to 20%. Moreover, cone penetration tests were performed before and after shaking to study the effect of fines on penetration resistance. At the same depth across all tests, the penetration resistance before shaking decreased with increasing clay content. However, the penetration resistance after shaking increased with increasing clay content from 0% to 10% and then decreased with increasing clay content from 10% to 20%. When compared with the before-shaking profile, the percentage change in penetration resistance after shaking increased with clay content at the same depth.
    publisherASCE
    titleCentrifuge Shake Table Tests on the Liquefaction Resistance of Sand with Clayey Fines
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002708
    journal fristpage04021180
    journal lastpage04021180-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian