YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adaptive Pushbutton Control for Signalized Pedestrian Midblock Crossings

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 004::page 04022011
    Author:
    Fan Wu
    ,
    Huiyu Chen
    ,
    Kaizhe Hou
    ,
    Zhanhong Cheng
    ,
    Tony Z. Qiu
    DOI: 10.1061/JTEPBS.0000659
    Publisher: ASCE
    Abstract: Pushbutton control is ideal for midblock crossings with low pedestrian and vehicle demand, but it causes significant interruptions to traffic flow with frequent pedestrian crossing requests. Therefore, we propose an adaptive midblock crossing control (AMCC) that minimizes the impact of the pushbutton on traffic flow while maintaining a reasonably short pedestrian wait time (PWT). We regard the midblock crossing and two adjacent intersections as an integrated system and propose two types of AMCCs—AMCC-band and AMCC-vehicle—based on different types of real-time information. AMCC-band seeks the best PWT at the midblock crossing to minimize the green band loss with downstream intersections using the signal control status of adjacent intersections. Alternatively, AMCC-vehicle leverages real-time vehicle location information [e.g., obtained from vehicle-to-infrastructure (V2I) communication, connected vehicles (CVs), or advanced sensors] to minimize the estimated number of affected vehicles. Our study tests AMCC in the software Simulation of Urban MObility (SUMO) with a two-intersection traffic network. Results show that using AMCC at a midblock crossing significantly reduces vehicle delay under a wide range of traffic conditions compared to using a fixed phase and timing (Fixed) control or a pedestrian light-controlled (Pelican) crossing. The average pedestrian delay of AMCC is slightly above Pelican but much lower than Fixed. In addition, the two types of AMCCs work equally well in reducing vehicle delay, but the AMCC-vehicle has a considerably lower pedestrian delay. The results demonstrate the advantages of AMCC in reducing vehicle and pedestrian delay and vehicle stops, improving traffic efficiency at the arterial. Furthermore, the sensitivity analysis shows that the AMCC approach is adaptive to a broad range of traffic demands. Our method extends the application scope of common pushbutton control methods. We conclude that AMCC contributes to a more traffic-efficient, more pedestrian-friendly, and safer transportation system.
    • Download: (1.447Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adaptive Pushbutton Control for Signalized Pedestrian Midblock Crossings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282888
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorFan Wu
    contributor authorHuiyu Chen
    contributor authorKaizhe Hou
    contributor authorZhanhong Cheng
    contributor authorTony Z. Qiu
    date accessioned2022-05-07T20:46:41Z
    date available2022-05-07T20:46:41Z
    date issued2022-02-04
    identifier otherJTEPBS.0000659.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282888
    description abstractPushbutton control is ideal for midblock crossings with low pedestrian and vehicle demand, but it causes significant interruptions to traffic flow with frequent pedestrian crossing requests. Therefore, we propose an adaptive midblock crossing control (AMCC) that minimizes the impact of the pushbutton on traffic flow while maintaining a reasonably short pedestrian wait time (PWT). We regard the midblock crossing and two adjacent intersections as an integrated system and propose two types of AMCCs—AMCC-band and AMCC-vehicle—based on different types of real-time information. AMCC-band seeks the best PWT at the midblock crossing to minimize the green band loss with downstream intersections using the signal control status of adjacent intersections. Alternatively, AMCC-vehicle leverages real-time vehicle location information [e.g., obtained from vehicle-to-infrastructure (V2I) communication, connected vehicles (CVs), or advanced sensors] to minimize the estimated number of affected vehicles. Our study tests AMCC in the software Simulation of Urban MObility (SUMO) with a two-intersection traffic network. Results show that using AMCC at a midblock crossing significantly reduces vehicle delay under a wide range of traffic conditions compared to using a fixed phase and timing (Fixed) control or a pedestrian light-controlled (Pelican) crossing. The average pedestrian delay of AMCC is slightly above Pelican but much lower than Fixed. In addition, the two types of AMCCs work equally well in reducing vehicle delay, but the AMCC-vehicle has a considerably lower pedestrian delay. The results demonstrate the advantages of AMCC in reducing vehicle and pedestrian delay and vehicle stops, improving traffic efficiency at the arterial. Furthermore, the sensitivity analysis shows that the AMCC approach is adaptive to a broad range of traffic demands. Our method extends the application scope of common pushbutton control methods. We conclude that AMCC contributes to a more traffic-efficient, more pedestrian-friendly, and safer transportation system.
    publisherASCE
    titleAdaptive Pushbutton Control for Signalized Pedestrian Midblock Crossings
    typeJournal Paper
    journal volume148
    journal issue4
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000659
    journal fristpage04022011
    journal lastpage04022011-11
    page11
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian