YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Proposed Empirical Approach to Measuring Traffic String Stability

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 002::page 04022005
    Author:
    Narayana Raju
    ,
    Shubham Patil
    ,
    Shriniwas S. Arkatkar
    ,
    Said Easa
    DOI: 10.1061/AJRUA6.0001227
    Publisher: ASCE
    Abstract: This study originated with the intent of qualifying traffic string stability from empirical observations. A new responsiveness angle measure was developed to assess driver instincts under vehicle-following conditions. In this measure, the degree of the follower vehicle’s attention towards its leader vehicle’s actions is quantified. In understanding string stability in the traffic stream and assessing the propagation of disturbances, the newly conceptualized measure was used along with a discrete Fourier transform to measure the frequencies associated with responsiveness angle sequences. In this transform, a higher frequency of the angle depicts unstable conditions and vice versa. In assessing string stability from the empirical observations, vehicular trajectory data were developed from three study sections. Two study sections tended to have homogeneous lane-wise traffic, whereas the third section had mixed (heterogeneous) traffic. The results of the string stability analysis over the study sections showed that string stability varied with the change in traffic flow conditions, road geometries, and traffic flow type. In the case of free-flow conditions, the traffic streams were found to be stable with marginal disturbances in the responsiveness angle. From the analysis, it was observed that, in the case of study Section 3, around 26 instances of the stream were extremely unstable conditions (frequency equal to 10). For study Sections 1 and 2, the traffic stream was unsteady for 4 and 13 instances, respectively. However, as the traffic flow level rose, string stability deteriorated. This study demonstrated a novel approach to analyzing string stability based on actual traffic conditions that can be implemented in real time for traffic stream monitoring.
    • Download: (1.969Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Proposed Empirical Approach to Measuring Traffic String Stability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282747
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorNarayana Raju
    contributor authorShubham Patil
    contributor authorShriniwas S. Arkatkar
    contributor authorSaid Easa
    date accessioned2022-05-07T20:40:52Z
    date available2022-05-07T20:40:52Z
    date issued2022-01-27
    identifier otherAJRUA6.0001227.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282747
    description abstractThis study originated with the intent of qualifying traffic string stability from empirical observations. A new responsiveness angle measure was developed to assess driver instincts under vehicle-following conditions. In this measure, the degree of the follower vehicle’s attention towards its leader vehicle’s actions is quantified. In understanding string stability in the traffic stream and assessing the propagation of disturbances, the newly conceptualized measure was used along with a discrete Fourier transform to measure the frequencies associated with responsiveness angle sequences. In this transform, a higher frequency of the angle depicts unstable conditions and vice versa. In assessing string stability from the empirical observations, vehicular trajectory data were developed from three study sections. Two study sections tended to have homogeneous lane-wise traffic, whereas the third section had mixed (heterogeneous) traffic. The results of the string stability analysis over the study sections showed that string stability varied with the change in traffic flow conditions, road geometries, and traffic flow type. In the case of free-flow conditions, the traffic streams were found to be stable with marginal disturbances in the responsiveness angle. From the analysis, it was observed that, in the case of study Section 3, around 26 instances of the stream were extremely unstable conditions (frequency equal to 10). For study Sections 1 and 2, the traffic stream was unsteady for 4 and 13 instances, respectively. However, as the traffic flow level rose, string stability deteriorated. This study demonstrated a novel approach to analyzing string stability based on actual traffic conditions that can be implemented in real time for traffic stream monitoring.
    publisherASCE
    titleProposed Empirical Approach to Measuring Traffic String Stability
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001227
    journal fristpage04022005
    journal lastpage04022005-9
    page9
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian