YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methodology to Quantitatively Assess Impacts of 5G Telecommunications Cybersecurity Risk Scenarios on Dependent Connected Urban Transportation Systems

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 002::page 04022004
    Author:
    Paola Vargas
    ,
    Iris Tien
    DOI: 10.1061/AJRUA6.0001220
    Publisher: ASCE
    Abstract: The fifth generation (5G) technology standard for cellular networks is currently being developed and is in the early stages of rollout across the United States. This upgrade from 4G LTE (long-term evolution) will not only have implications for the telecommunications network itself, but also on the many critical infrastructure systems that will use and depend on 5G for operations and functionality. Cellular vehicle-to-everything (C-V2X) technology utilizes 5G and has the potential to improve the safety and efficiency of the transportation system by allowing vehicles to communicate with one another and automating certain driving features. However, it is important to consider the risks that 5G brings, including cybersecurity risks, and how attacks through the 5G network can disrupt a traffic network that includes C-V2X technology. This paper presents a method to characterize the effects of several risk scenarios. Compared to prior qualitative risk assessments, outcomes include quantitative indicators measuring system safety and performance for analysis. The approach enables a more detailed and rigorous assessment of interdependent systems risks between the telecommunications and transportation networks than previously possible, particularly in the transition to 5G. A range of potential risk scenarios are assessed. The results show that cyberattacks that alter the behavior of vehicles cause delays across the entire network, cascading across the system and affecting more than just the vehicles directly targeted. The simulations show different levels of traffic delays and numbers of collisions for each risk scenario, indicating that the effects of a cyberattack can differ widely depending on the specifics of the attack. The simulation is easily adaptable to the location, C-V2X features, and risk scenarios of interest. Results provide information to formulate and prioritize risk mitigation strategies as the technology is developed to minimize the impacts of these attacks and system disruptions.
    • Download: (1.733Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methodology to Quantitatively Assess Impacts of 5G Telecommunications Cybersecurity Risk Scenarios on Dependent Connected Urban Transportation Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282740
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorPaola Vargas
    contributor authorIris Tien
    date accessioned2022-05-07T20:40:32Z
    date available2022-05-07T20:40:32Z
    date issued2022-01-22
    identifier otherAJRUA6.0001220.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282740
    description abstractThe fifth generation (5G) technology standard for cellular networks is currently being developed and is in the early stages of rollout across the United States. This upgrade from 4G LTE (long-term evolution) will not only have implications for the telecommunications network itself, but also on the many critical infrastructure systems that will use and depend on 5G for operations and functionality. Cellular vehicle-to-everything (C-V2X) technology utilizes 5G and has the potential to improve the safety and efficiency of the transportation system by allowing vehicles to communicate with one another and automating certain driving features. However, it is important to consider the risks that 5G brings, including cybersecurity risks, and how attacks through the 5G network can disrupt a traffic network that includes C-V2X technology. This paper presents a method to characterize the effects of several risk scenarios. Compared to prior qualitative risk assessments, outcomes include quantitative indicators measuring system safety and performance for analysis. The approach enables a more detailed and rigorous assessment of interdependent systems risks between the telecommunications and transportation networks than previously possible, particularly in the transition to 5G. A range of potential risk scenarios are assessed. The results show that cyberattacks that alter the behavior of vehicles cause delays across the entire network, cascading across the system and affecting more than just the vehicles directly targeted. The simulations show different levels of traffic delays and numbers of collisions for each risk scenario, indicating that the effects of a cyberattack can differ widely depending on the specifics of the attack. The simulation is easily adaptable to the location, C-V2X features, and risk scenarios of interest. Results provide information to formulate and prioritize risk mitigation strategies as the technology is developed to minimize the impacts of these attacks and system disruptions.
    publisherASCE
    titleMethodology to Quantitatively Assess Impacts of 5G Telecommunications Cybersecurity Risk Scenarios on Dependent Connected Urban Transportation Systems
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001220
    journal fristpage04022004
    journal lastpage04022004-15
    page15
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian