YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Generation of Multivariate Seismic Intensity Maps Using Hazard Quantization

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001::page 04021078
    Author:
    Liyang Ma
    ,
    Daniel Conus
    ,
    Paolo Bocchini
    DOI: 10.1061/AJRUA6.0001210
    Publisher: ASCE
    Abstract: This paper introduces a method for the optimal generation of multivariate intensity measure (IM) maps representing various aspects of the intensity of an earthquake over a region that can be used as input for regional hazard and loss-estimation analyses. The proposed method is an extension of the single-variate hazard quantization (HQ) methodology for the effective sampling of IM maps with a single intensity measure. The use of multiple intensity measures to describe an earthquake enables a more comprehensive representation of the event, with richer information. For instance, to conduct accurate regional seismic loss analyses of a portfolio of structures with different fundamental periods, maps of spectral accelerations at different periods (multivariate IM maps) are necessary. With this in view, the multivariate HQ method is proposed for the effective generation of a relatively small set of multivariate IM maps that can capture the seismicity of a region. A case study of the seismic region of Charleston, South Carolina, is presented. The sample space is represented by a large set of pairs of IM maps representing the spectral acceleration at two different periods, with each pair representing a specific earthquake event. The simulated pairs of IM maps carry the stochastic characteristics of the associated seismic events, such as the spatial correlation of the ground motions and the cross correlation between different intensities at different sites in the region. The ability of the proposed method to provide an accurate estimation of the hazard curve for both intensity measures and to correctly capture the spatial autocorrelations and the spatial cross correlation among the two intensity measures was investigated quantitatively. Experiments were conducted to demonstrate the robustness of the method and the effect of the sample size on the performance of the method.
    • Download: (2.821Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Generation of Multivariate Seismic Intensity Maps Using Hazard Quantization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282730
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorLiyang Ma
    contributor authorDaniel Conus
    contributor authorPaolo Bocchini
    date accessioned2022-05-07T20:39:59Z
    date available2022-05-07T20:39:59Z
    date issued2021-11-29
    identifier otherAJRUA6.0001210.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282730
    description abstractThis paper introduces a method for the optimal generation of multivariate intensity measure (IM) maps representing various aspects of the intensity of an earthquake over a region that can be used as input for regional hazard and loss-estimation analyses. The proposed method is an extension of the single-variate hazard quantization (HQ) methodology for the effective sampling of IM maps with a single intensity measure. The use of multiple intensity measures to describe an earthquake enables a more comprehensive representation of the event, with richer information. For instance, to conduct accurate regional seismic loss analyses of a portfolio of structures with different fundamental periods, maps of spectral accelerations at different periods (multivariate IM maps) are necessary. With this in view, the multivariate HQ method is proposed for the effective generation of a relatively small set of multivariate IM maps that can capture the seismicity of a region. A case study of the seismic region of Charleston, South Carolina, is presented. The sample space is represented by a large set of pairs of IM maps representing the spectral acceleration at two different periods, with each pair representing a specific earthquake event. The simulated pairs of IM maps carry the stochastic characteristics of the associated seismic events, such as the spatial correlation of the ground motions and the cross correlation between different intensities at different sites in the region. The ability of the proposed method to provide an accurate estimation of the hazard curve for both intensity measures and to correctly capture the spatial autocorrelations and the spatial cross correlation among the two intensity measures was investigated quantitatively. Experiments were conducted to demonstrate the robustness of the method and the effect of the sample size on the performance of the method.
    publisherASCE
    titleOptimal Generation of Multivariate Seismic Intensity Maps Using Hazard Quantization
    typeJournal Paper
    journal volume8
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001210
    journal fristpage04021078
    journal lastpage04021078-14
    page14
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian