YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robust Optimization Method for Mountain Railway Alignments Considering Preference Uncertainty for Costs and Seismic Risks

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001::page 04021077
    Author:
    Taoran Song
    ,
    Hao Pu
    ,
    Paul Schonfeld
    ,
    Jianping Hu
    ,
    Jiangtao Liu
    DOI: 10.1061/AJRUA6.0001207
    Publisher: ASCE
    Abstract: Railways are vital infrastructures whose design is complex and time-consuming. In addition to multiple conflicting objectives and highly-constrained search spaces, their design also faces great uncertainties. The aim of this study is to optimize railway alignments considering decision-makers’ preference uncertainty for multiple objectives, which can influence the alignment determination macroscopically and fundamentally. First, a multiobjective model is built by integrating costs (including construction and operation costs) and seismic risks (including direct and indirect losses) for mountain railway optimization. To solve this model, a particle swarm algorithm is improved by incorporating a multicriteria tournament decision (MTD). Then, a robust optimization MTD (RO-MTD) method is developed to find cost-risk tradeoffs by addressing the uncertainty of decision-makers’ preferences. The major steps of the RO-MTD include (1) treating uncertain preferences as variables, (2) sampling the uncertain space of preferences, (3) analyzing all possible preference scenarios, and (4) integrating those analyses to achieve a robust evaluation. Finally, the preceding approaches are applied to a complicated real-world case. By comparing the RO-MTD and MTD as well as the computer-generated alignment and the best manually-designed one, the effectiveness of the proposed method is confirmed.
    • Download: (1000.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robust Optimization Method for Mountain Railway Alignments Considering Preference Uncertainty for Costs and Seismic Risks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282726
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorTaoran Song
    contributor authorHao Pu
    contributor authorPaul Schonfeld
    contributor authorJianping Hu
    contributor authorJiangtao Liu
    date accessioned2022-05-07T20:39:47Z
    date available2022-05-07T20:39:47Z
    date issued2021-11-25
    identifier otherAJRUA6.0001207.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282726
    description abstractRailways are vital infrastructures whose design is complex and time-consuming. In addition to multiple conflicting objectives and highly-constrained search spaces, their design also faces great uncertainties. The aim of this study is to optimize railway alignments considering decision-makers’ preference uncertainty for multiple objectives, which can influence the alignment determination macroscopically and fundamentally. First, a multiobjective model is built by integrating costs (including construction and operation costs) and seismic risks (including direct and indirect losses) for mountain railway optimization. To solve this model, a particle swarm algorithm is improved by incorporating a multicriteria tournament decision (MTD). Then, a robust optimization MTD (RO-MTD) method is developed to find cost-risk tradeoffs by addressing the uncertainty of decision-makers’ preferences. The major steps of the RO-MTD include (1) treating uncertain preferences as variables, (2) sampling the uncertain space of preferences, (3) analyzing all possible preference scenarios, and (4) integrating those analyses to achieve a robust evaluation. Finally, the preceding approaches are applied to a complicated real-world case. By comparing the RO-MTD and MTD as well as the computer-generated alignment and the best manually-designed one, the effectiveness of the proposed method is confirmed.
    publisherASCE
    titleRobust Optimization Method for Mountain Railway Alignments Considering Preference Uncertainty for Costs and Seismic Risks
    typeJournal Paper
    journal volume8
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001207
    journal fristpage04021077
    journal lastpage04021077-11
    page11
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian