YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Practical Bayesian Framework for Structural Model Updating and Prediction

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001::page 04021073
    Author:
    Tao Yin
    DOI: 10.1061/AJRUA6.0001196
    Publisher: ASCE
    Abstract: Due to the influence of various uncertain factors, there will inevitably be certain errors between the prediction of finite-element (FE) model and observed data for a target structure. It is thus necessary to calibrate the initial FE model using the measured data to ensure the accuracy of the numerical model for the purpose of structural system identification and health monitoring. Although structural FE model updating methods have been extensively studied in the past few decades, the research based on deterministic methods in the current literature still occupies a large proportion, which cannot account for the uncertain effects during the model updating. The noise robustness of both the updating procedure and the generalization capability of the updated model are expected to be poor. The model updating based on the Bayesian theorem can quantify the uncertainty of model identification results, but it is computationally expensive for the Bayesian inference of regularization hyperparameters since the Hessian matrix is generally required to be evaluated repeatedly especially for a huge amount of uncertain model parameters. Also, effective prediction based on the refined FE model is still lacking in the literature, which is essential for judging and evaluating the quality of the updated model. This paper proposes a practical framework for structural FE model updating and prediction based on the Bayesian regularization with incomplete modal data. The structural model parameters and regularization hyperparameters are identified alternatively in an adaptive manner, and the Gauss-Newton method is used to approximate the true Hessian within the framework of the nonlinear least-squares algorithm. This is expected to improve the efficiency and robustness of model updating and prediction for handling large-scale FE models possessing a large number of uncertain model parameters. The proposed methodology is validated through the model updating and prediction conducted on a real-life pedestrian bridge based on field-testing data.
    • Download: (1.703Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Practical Bayesian Framework for Structural Model Updating and Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282715
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorTao Yin
    date accessioned2022-05-07T20:39:13Z
    date available2022-05-07T20:39:13Z
    date issued2021-10-20
    identifier otherAJRUA6.0001196.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282715
    description abstractDue to the influence of various uncertain factors, there will inevitably be certain errors between the prediction of finite-element (FE) model and observed data for a target structure. It is thus necessary to calibrate the initial FE model using the measured data to ensure the accuracy of the numerical model for the purpose of structural system identification and health monitoring. Although structural FE model updating methods have been extensively studied in the past few decades, the research based on deterministic methods in the current literature still occupies a large proportion, which cannot account for the uncertain effects during the model updating. The noise robustness of both the updating procedure and the generalization capability of the updated model are expected to be poor. The model updating based on the Bayesian theorem can quantify the uncertainty of model identification results, but it is computationally expensive for the Bayesian inference of regularization hyperparameters since the Hessian matrix is generally required to be evaluated repeatedly especially for a huge amount of uncertain model parameters. Also, effective prediction based on the refined FE model is still lacking in the literature, which is essential for judging and evaluating the quality of the updated model. This paper proposes a practical framework for structural FE model updating and prediction based on the Bayesian regularization with incomplete modal data. The structural model parameters and regularization hyperparameters are identified alternatively in an adaptive manner, and the Gauss-Newton method is used to approximate the true Hessian within the framework of the nonlinear least-squares algorithm. This is expected to improve the efficiency and robustness of model updating and prediction for handling large-scale FE models possessing a large number of uncertain model parameters. The proposed methodology is validated through the model updating and prediction conducted on a real-life pedestrian bridge based on field-testing data.
    publisherASCE
    titleA Practical Bayesian Framework for Structural Model Updating and Prediction
    typeJournal Paper
    journal volume8
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001196
    journal fristpage04021073
    journal lastpage04021073-15
    page15
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian