YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Capacity Design of Coupled Composite Plate Shear Wall–Concrete-Filled System

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 004::page 04022022
    Author:
    Morgan Broberg
    ,
    Soheil Shafaei
    ,
    Emre Kizilarslan
    ,
    Jungil Seo
    ,
    Amit H. Varma
    ,
    Michel Bruneau
    ,
    Ron Klemencic
    DOI: 10.1061/(ASCE)ST.1943-541X.0003296
    Publisher: ASCE
    Abstract: Composite plate shear walls–concrete-filled (C-PSW/CF) are a new and innovative lateral force–resisting system intended for high-rise buildings. High-rise building applications of this system are particularly efficient in the coupled wall configuration, in which the walls are C-PSW/CF and the coupling beams are concrete filled steel box sections. This paper presents a capacity design principle for the seismic design of coupled composite plate shear wall–concrete filled (CC-PSW/CF) systems. The capacity design principle implements a strong wall–weak coupling beam approach, in which flexural yielding occurs in the coupling beams before flexural yielding at the base of walls. The coupling beams are sized to resist the calculated seismic lateral force level. The composite walls are sized to resist an amplified seismic lateral force corresponding to the overall plastic mechanism for the structure, while accounting for the capacity-limited forces from the coupling beams and the coupling action between the walls. The paper summarizes the recommendations and requirements for appropriate sizing of the composite coupling beams and walls. These recommendations were used along with the capacity design principle to design four example (8–22-story) structures and evaluate their seismic behavior. The structures were modeled using benchmarked finite-element models and fiber-based models that accounted for the various limit states, including steel yielding, local buckling, fracture, concrete crushing, confinement, and tension cracking. The numerical models were analyzed for monotonic pushover loading and scaled seismic ground motions. The structural responses from the nonlinear pushover analysis and the nonlinear time history analyses were in accordance with the capacity limited design philosophy, thus confirming its efficacy.
    • Download: (5.452Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Capacity Design of Coupled Composite Plate Shear Wall–Concrete-Filled System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282432
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMorgan Broberg
    contributor authorSoheil Shafaei
    contributor authorEmre Kizilarslan
    contributor authorJungil Seo
    contributor authorAmit H. Varma
    contributor authorMichel Bruneau
    contributor authorRon Klemencic
    date accessioned2022-05-07T20:26:36Z
    date available2022-05-07T20:26:36Z
    date issued2022-02-07
    identifier other(ASCE)ST.1943-541X.0003296.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282432
    description abstractComposite plate shear walls–concrete-filled (C-PSW/CF) are a new and innovative lateral force–resisting system intended for high-rise buildings. High-rise building applications of this system are particularly efficient in the coupled wall configuration, in which the walls are C-PSW/CF and the coupling beams are concrete filled steel box sections. This paper presents a capacity design principle for the seismic design of coupled composite plate shear wall–concrete filled (CC-PSW/CF) systems. The capacity design principle implements a strong wall–weak coupling beam approach, in which flexural yielding occurs in the coupling beams before flexural yielding at the base of walls. The coupling beams are sized to resist the calculated seismic lateral force level. The composite walls are sized to resist an amplified seismic lateral force corresponding to the overall plastic mechanism for the structure, while accounting for the capacity-limited forces from the coupling beams and the coupling action between the walls. The paper summarizes the recommendations and requirements for appropriate sizing of the composite coupling beams and walls. These recommendations were used along with the capacity design principle to design four example (8–22-story) structures and evaluate their seismic behavior. The structures were modeled using benchmarked finite-element models and fiber-based models that accounted for the various limit states, including steel yielding, local buckling, fracture, concrete crushing, confinement, and tension cracking. The numerical models were analyzed for monotonic pushover loading and scaled seismic ground motions. The structural responses from the nonlinear pushover analysis and the nonlinear time history analyses were in accordance with the capacity limited design philosophy, thus confirming its efficacy.
    publisherASCE
    titleCapacity Design of Coupled Composite Plate Shear Wall–Concrete-Filled System
    typeJournal Paper
    journal volume148
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003296
    journal fristpage04022022
    journal lastpage04022022-18
    page18
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian