YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental, Aerodynamic Evaluation of Design Choices for a Low-Pressure Compressor Transition Duct

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 009::page 091004-1
    Author:
    Walker, A. Duncan
    ,
    Mariah, Ian
    ,
    Hall, Chris
    DOI: 10.1115/1.4050598
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The S-shaped duct which transfers flow from the low-pressure fan to the engine core in large civil turbofans presents a challenging problem. Aerodynamically it has a spatially and temporarily varying inlet flow combined with a complex flow field which develops under the combined influence of pressure gradients and streamline curvature. It must also accommodate the transfer of structural loads and services across the main gas path. This necessitates the use of structural vanes which can compromise aerodynamics, introduce unwanted component interactions, and erode performance. This must all be achieved with minimum length/weight and without flow separation. This paper presents a comprehensive aerodynamic evaluation of three design options for a transition duct containing (i) a long-chord, structural compressor outlet guide vane (OGV), (ii) a aerodynamically optimal but non-structural OGV in conjunction with a small number of load bearing struts, and (iii) a fully integrated OGV and strut design. Evaluation was performed using a low-speed test facility incorporating a 1½ stage axial compressor and engine representative transition duct. Measured data suggest that all the options were viable. However, the aerodynamic vane and discrete struts produced the lowest system loss with the other two options being comparable. The performance of the structural vane was sensitive to off-design conditions producing a notable increase in loss at a low flow coefficient. The optimized aerodynamic vanes were much less sensitive to off-design conditions while the fully integrated design showed only very small changes in loss.
    • Download: (2.798Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental, Aerodynamic Evaluation of Design Choices for a Low-Pressure Compressor Transition Duct

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278999
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorWalker, A. Duncan
    contributor authorMariah, Ian
    contributor authorHall, Chris
    date accessioned2022-02-06T05:53:45Z
    date available2022-02-06T05:53:45Z
    date copyright5/3/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_9_091004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278999
    description abstractThe S-shaped duct which transfers flow from the low-pressure fan to the engine core in large civil turbofans presents a challenging problem. Aerodynamically it has a spatially and temporarily varying inlet flow combined with a complex flow field which develops under the combined influence of pressure gradients and streamline curvature. It must also accommodate the transfer of structural loads and services across the main gas path. This necessitates the use of structural vanes which can compromise aerodynamics, introduce unwanted component interactions, and erode performance. This must all be achieved with minimum length/weight and without flow separation. This paper presents a comprehensive aerodynamic evaluation of three design options for a transition duct containing (i) a long-chord, structural compressor outlet guide vane (OGV), (ii) a aerodynamically optimal but non-structural OGV in conjunction with a small number of load bearing struts, and (iii) a fully integrated OGV and strut design. Evaluation was performed using a low-speed test facility incorporating a 1½ stage axial compressor and engine representative transition duct. Measured data suggest that all the options were viable. However, the aerodynamic vane and discrete struts produced the lowest system loss with the other two options being comparable. The performance of the structural vane was sensitive to off-design conditions producing a notable increase in loss at a low flow coefficient. The optimized aerodynamic vanes were much less sensitive to off-design conditions while the fully integrated design showed only very small changes in loss.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental, Aerodynamic Evaluation of Design Choices for a Low-Pressure Compressor Transition Duct
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4050598
    journal fristpage091004-1
    journal lastpage091004-14
    page14
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian