YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 009::page 091002-1
    Author:
    Zhao, Yaomin
    ,
    Sandberg, Richard D.
    DOI: 10.1115/1.4050453
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We report on a series of highly resolved large-eddy simulations of the LS89 high-pressure turbine (HPT) vane, varying the exit Mach number between Ma = 0.7 and 1.1. In order to accurately resolve the blade boundary layers and enforce pitchwise periodicity, we for the first time use an overset mesh method, which consists of an O-type grid around the blade overlapping with a background H-type grid. The simulations were conducted either with a synthetic inlet turbulence condition or including upstream bars. A quantitative comparison shows that the computationally more efficient synthetic method is able to reproduce the turbulence characteristics of the upstream bars. We further perform a detailed analysis of the flow fields, showing that the varying exit Mach number significantly changes the turbine efficiency by affecting the suction-side transition, blade boundary layer profiles, and wake mixing. In particular, the Ma = 1.1 case includes a strong shock that interacts with the trailing edge, causing an increased complexity of the flow field. We use our recently developed entropy loss analysis (Zhao and Sandberg, 2019, “Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane,” ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Paper No. GT2019-90126) to decompose the overall loss into different source terms and identify the regions that dominate the loss generation. Comparing the different Ma cases, we conclude that the main mechanism for the extra loss generation in the Ma = 1.1 case is the shock-related strong pressure gradient interacting with the turbulent boundary layer and the wake, resulting in significant turbulence production and extensive viscous dissipation.
    • Download: (925.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278997
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorZhao, Yaomin
    contributor authorSandberg, Richard D.
    date accessioned2022-02-06T05:53:40Z
    date available2022-02-06T05:53:40Z
    date copyright5/3/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_9_091002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278997
    description abstractWe report on a series of highly resolved large-eddy simulations of the LS89 high-pressure turbine (HPT) vane, varying the exit Mach number between Ma = 0.7 and 1.1. In order to accurately resolve the blade boundary layers and enforce pitchwise periodicity, we for the first time use an overset mesh method, which consists of an O-type grid around the blade overlapping with a background H-type grid. The simulations were conducted either with a synthetic inlet turbulence condition or including upstream bars. A quantitative comparison shows that the computationally more efficient synthetic method is able to reproduce the turbulence characteristics of the upstream bars. We further perform a detailed analysis of the flow fields, showing that the varying exit Mach number significantly changes the turbine efficiency by affecting the suction-side transition, blade boundary layer profiles, and wake mixing. In particular, the Ma = 1.1 case includes a strong shock that interacts with the trailing edge, causing an increased complexity of the flow field. We use our recently developed entropy loss analysis (Zhao and Sandberg, 2019, “Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane,” ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Paper No. GT2019-90126) to decompose the overall loss into different source terms and identify the regions that dominate the loss generation. Comparing the different Ma cases, we conclude that the main mechanism for the extra loss generation in the Ma = 1.1 case is the shock-related strong pressure gradient interacting with the turbulent boundary layer and the wake, resulting in significant turbulence production and extensive viscous dissipation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHigh-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4050453
    journal fristpage091002-1
    journal lastpage091002-8
    page8
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian