YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Eddy Simulation of Variable Speed Power Turbine Cascade With Inflow Turbulence

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 008::page 081006-1
    Author:
    Miki, Kenji
    ,
    Ameri, Ali
    DOI: 10.1115/1.4050437
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Numerical results are presented from the National Aeronautics and Space Administration (NASA) Glenn Research Center's in-house turbomachinery code Glenn-HT applied to the variable-speed power turbine (VSPT) experiment at the NASA Transonic Turbine Blade Cascade Facility. The main goal of this paper is to implement a digital filtering method to generate turbulence upstream and a subgrid model (localized dynamic k-equation model (LDKM)) in the framework of large-eddy simulation (LES) in order to investigate the effect of inflow turbulence on the transition seen in the VSPT experimental data at the cruise condition (incidence angle of 40 deg and Tu = 0.5%, 5%, 10%, and 15%). Although the boundary layer on the suction side and pressure side of the blades is initially laminar due to favorable pressure gradient, the laminar flow can transition to turbulent flow past a separation zone on the suction side or by natural or bypass transition. This process determines the total pressure losses in the wake. Therefore, it is desirable to develop a reliable prediction tool to accurately capture the transition mechanism in blade rows operated under the conditions of low Reynolds number and at a variety of freestream turbulence conditions. Our numerical studies reveal that the location of separation is rather insensitive to the level of Tu; however, the effect of increasing Tu seems to be in reducing the size and ultimately suppressing the separation bubble. In addition, we performed spectral analysis to identify the peak frequencies in the region where the separation bubble is formed, which provides valuable insights into the transition/separation mechanism.
    • Download: (1.818Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Eddy Simulation of Variable Speed Power Turbine Cascade With Inflow Turbulence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278984
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMiki, Kenji
    contributor authorAmeri, Ali
    date accessioned2022-02-06T05:53:17Z
    date available2022-02-06T05:53:17Z
    date copyright4/26/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_8_081006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278984
    description abstractNumerical results are presented from the National Aeronautics and Space Administration (NASA) Glenn Research Center's in-house turbomachinery code Glenn-HT applied to the variable-speed power turbine (VSPT) experiment at the NASA Transonic Turbine Blade Cascade Facility. The main goal of this paper is to implement a digital filtering method to generate turbulence upstream and a subgrid model (localized dynamic k-equation model (LDKM)) in the framework of large-eddy simulation (LES) in order to investigate the effect of inflow turbulence on the transition seen in the VSPT experimental data at the cruise condition (incidence angle of 40 deg and Tu = 0.5%, 5%, 10%, and 15%). Although the boundary layer on the suction side and pressure side of the blades is initially laminar due to favorable pressure gradient, the laminar flow can transition to turbulent flow past a separation zone on the suction side or by natural or bypass transition. This process determines the total pressure losses in the wake. Therefore, it is desirable to develop a reliable prediction tool to accurately capture the transition mechanism in blade rows operated under the conditions of low Reynolds number and at a variety of freestream turbulence conditions. Our numerical studies reveal that the location of separation is rather insensitive to the level of Tu; however, the effect of increasing Tu seems to be in reducing the size and ultimately suppressing the separation bubble. In addition, we performed spectral analysis to identify the peak frequencies in the region where the separation bubble is formed, which provides valuable insights into the transition/separation mechanism.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLarge-Eddy Simulation of Variable Speed Power Turbine Cascade With Inflow Turbulence
    typeJournal Paper
    journal volume143
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4050437
    journal fristpage081006-1
    journal lastpage081006-13
    page13
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian