YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Attack Angle and Relative Thickness of Novel Wing-Shaped Turbulators on Turbulent Hydrothermal Performance in a Two-Pass Square Channel

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 004::page 041003-1
    Author:
    Liou, Tong-Miin
    ,
    Chen, Chieh-Chu
    ,
    Wang, Chun-Sheng
    DOI: 10.1115/1.4049614
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work aims to combine the effects of the near-wall and core flow disturbance by proposing novel wing-shaped turbulators. The new turbulators are fabricated with the fused deposition modeling (3D printing) technology. To explore their effects on detailed flow fields, local temperature distributions, and pressure drops in a two-pass square channel, particle image velocimetry (PIV), infrared thermography (IR camera), and pressure transducer measurements are performed. The turbulator pitch, clearance, and truncation gap ratio based on the channel hydraulic diameter of 45.5 mm are, respectively, fixed at 0.7, 0.25, and 0.06. Varied parameters include turbulator attack angle (α = 10 deg, 15 deg, 20 deg, and 30 deg), maximum thickness to chord line ratio (t/C = 0.08, 0.13, 0.16, 0.20, and 0.23), and bulk Reynolds number (Re = 5000–20,000). From the experimental results and flow parameters analyzed, the dimensionless spanwise-averaged mean transverse velocity and cross-sectionally averaged vorticity magnitude are identified to be the most relevant ones to spanwise-averaged local Nusselt number ratio in the first and second pass. Among all examined cases and previous data with Fanning friction factor ratio (f¯/fo) less than 50, the case with α = 20 deg and t/C = 0.20 attains the highest thermal performance factor (TPF) and overall Nusselt number ratio Nu¯/Nuo up to 1.68 and 5.36, respectively. Furthermore, empirical correlations of Nu¯/Nuoandf¯/fo versus α, t/C, and Re are proposed.
    • Download: (1.171Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Attack Angle and Relative Thickness of Novel Wing-Shaped Turbulators on Turbulent Hydrothermal Performance in a Two-Pass Square Channel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278961
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorLiou, Tong-Miin
    contributor authorChen, Chieh-Chu
    contributor authorWang, Chun-Sheng
    date accessioned2022-02-06T05:52:37Z
    date available2022-02-06T05:52:37Z
    date copyright3/22/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_4_041003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278961
    description abstractThis work aims to combine the effects of the near-wall and core flow disturbance by proposing novel wing-shaped turbulators. The new turbulators are fabricated with the fused deposition modeling (3D printing) technology. To explore their effects on detailed flow fields, local temperature distributions, and pressure drops in a two-pass square channel, particle image velocimetry (PIV), infrared thermography (IR camera), and pressure transducer measurements are performed. The turbulator pitch, clearance, and truncation gap ratio based on the channel hydraulic diameter of 45.5 mm are, respectively, fixed at 0.7, 0.25, and 0.06. Varied parameters include turbulator attack angle (α = 10 deg, 15 deg, 20 deg, and 30 deg), maximum thickness to chord line ratio (t/C = 0.08, 0.13, 0.16, 0.20, and 0.23), and bulk Reynolds number (Re = 5000–20,000). From the experimental results and flow parameters analyzed, the dimensionless spanwise-averaged mean transverse velocity and cross-sectionally averaged vorticity magnitude are identified to be the most relevant ones to spanwise-averaged local Nusselt number ratio in the first and second pass. Among all examined cases and previous data with Fanning friction factor ratio (f¯/fo) less than 50, the case with α = 20 deg and t/C = 0.20 attains the highest thermal performance factor (TPF) and overall Nusselt number ratio Nu¯/Nuo up to 1.68 and 5.36, respectively. Furthermore, empirical correlations of Nu¯/Nuoandf¯/fo versus α, t/C, and Re are proposed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Attack Angle and Relative Thickness of Novel Wing-Shaped Turbulators on Turbulent Hydrothermal Performance in a Two-Pass Square Channel
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4049614
    journal fristpage041003-1
    journal lastpage041003-10
    page10
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian