YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effects of Reynolds Number on the Stall and Pre-Stall Behavior of Compact Axial Compressors

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 012::page 0121014-1
    Author:
    Hutchings, Jack
    ,
    A. Hall, Cesare
    DOI: 10.1115/1.4051502
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Compact axial compression systems are of interest to the domestic appliance industry. The associated low Reynolds number leads to high losses compared to large-scale compressors due to a transitional flow field with large regions of separation. This paper investigates how Reynolds number variations affect the three-dimensional and unsteady flow field in a compact compressor both pre-stall and in stall. An experimental study has been conducted using a scaled-up single-stage axial compressor across a Reynolds number range of 104–105. Steady and unsteady casing static pressure measurements, along with rotor upstream and downstream unsteady velocity measurements, have been used to observe the rotor flow field. As the Reynolds number is reduced below a critical value, 60,000 in the case of the compressor studied, the pressure rise coefficient of the compressor rapidly decreases. The exact value of the critical Reynolds number is expected to vary with the compressor geometry. This fall-off in performance corresponds to an increase in the compressor rotor secondary flows. Prior to stall, a broadband hump at around 50% of the blade passing frequency is present in the near-field casing static pressure spectra. At Reynolds numbers below the critical value, multiple equally spaced peaks also appear around the peak of the broadband hump. The spacing of these peaks has been found to be exactly equal to the measured stall cell speed once rotating stall is established. When operating in stall, the stall cell is found to increase in circumferential size and slow down as Reynolds number decreases. The measured spectra and observed flow structures show that disturbances exist prior to stall at frequencies consistent with the frequencies within stall. The size and shape of the stall cells that form are related to the extent of the three-dimensional flow field present prior to stall. Below a critical value, all of these flow features are highly sensitive to Reynolds number.
    • Download: (9.773Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effects of Reynolds Number on the Stall and Pre-Stall Behavior of Compact Axial Compressors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278959
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorHutchings, Jack
    contributor authorA. Hall, Cesare
    date accessioned2022-02-06T05:52:35Z
    date available2022-02-06T05:52:35Z
    date copyright8/10/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_12_121014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278959
    description abstractCompact axial compression systems are of interest to the domestic appliance industry. The associated low Reynolds number leads to high losses compared to large-scale compressors due to a transitional flow field with large regions of separation. This paper investigates how Reynolds number variations affect the three-dimensional and unsteady flow field in a compact compressor both pre-stall and in stall. An experimental study has been conducted using a scaled-up single-stage axial compressor across a Reynolds number range of 104–105. Steady and unsteady casing static pressure measurements, along with rotor upstream and downstream unsteady velocity measurements, have been used to observe the rotor flow field. As the Reynolds number is reduced below a critical value, 60,000 in the case of the compressor studied, the pressure rise coefficient of the compressor rapidly decreases. The exact value of the critical Reynolds number is expected to vary with the compressor geometry. This fall-off in performance corresponds to an increase in the compressor rotor secondary flows. Prior to stall, a broadband hump at around 50% of the blade passing frequency is present in the near-field casing static pressure spectra. At Reynolds numbers below the critical value, multiple equally spaced peaks also appear around the peak of the broadband hump. The spacing of these peaks has been found to be exactly equal to the measured stall cell speed once rotating stall is established. When operating in stall, the stall cell is found to increase in circumferential size and slow down as Reynolds number decreases. The measured spectra and observed flow structures show that disturbances exist prior to stall at frequencies consistent with the frequencies within stall. The size and shape of the stall cells that form are related to the extent of the three-dimensional flow field present prior to stall. Below a critical value, all of these flow features are highly sensitive to Reynolds number.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effects of Reynolds Number on the Stall and Pre-Stall Behavior of Compact Axial Compressors
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4051502
    journal fristpage0121014-1
    journal lastpage0121014-10
    page10
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian