Show simple item record

contributor authorAlmatrafi, Eydhah
contributor authorKhaliq, Abdul
date accessioned2022-02-06T05:50:12Z
date available2022-02-06T05:50:12Z
date copyright6/15/2021 12:00:00 AM
date issued2021
identifier issn0199-6231
identifier othersol_143_6_061009.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278878
description abstractA solar powered trigeneration system consisting of tower solar collector, Kalina cycle with the heat exchanger, and ejector-absorption refrigeration cycle is proposed to produce refrigeration below freezing, electricity, and process heat, simultaneously. Simulation through computational fluid dynamics using ansys-fluent package is conducted to examine the effect of coil diameter and inlet oil temperature on the pressure and temperature of solar heat transfer fluid. It is found that, for inlet temperature of 92 °C and direct normal irradiations of 850 W/m2, the solar heat transfer fluid outlet temperature increases by 9% when the coil diameter increased from 150 to 400 mm. Trigeneration performance is analyzed after altering hot oil outlet temperature, turbine inlet pressure, and the concentration of ammonia–water basic solution to study their effect on power produced by turbine, refrigeration load, exergy of refrigeration, and efficiencies of trigeneration system. An increase in the concentration of the ammonia–water basic solution is leading toward the significant increase in the turbine power and the elevation of trigeneration system’s energy and exergy efficiencies. Bottoming of the Kalina cycle with ejector-absorption refrigeration cycle shows the distribution of solar energy as energetic output 72.31% and energy lost to environment 27.69%. The solar exergy supplied to the trigeneration system is distributed as follows: 16.23% is the exergy produced, 1.62% is the exergy loss, and 82.15% is the exergy destroyed.
publisherThe American Society of Mechanical Engineers (ASME)
titleInvestigation of a Novel Solar Powered Trigeneration System for Simultaneous Production of Electricity, Heating, and Refrigeration Below Freezing
typeJournal Paper
journal volume143
journal issue6
journal titleJournal of Solar Energy Engineering
identifier doi10.1115/1.4051317
journal fristpage061009-1
journal lastpage061009-14
page14
treeJournal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record