YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Geotechnical Uncertainty on the Preliminary Design of Monopiles Supporting Offshore Wind Turbines

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2021:;volume( 007 ):;issue: 004::page 040903-1
    Author:
    Reale, Cormac
    ,
    Tott-Buswell, Jacques
    ,
    Prendergast, Luke J.
    DOI: 10.1115/1.4051418
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The growing demand for clean renewable energy sources and the lack of suitable nearshore sites are moving the offshore wind industry toward developing larger wind turbines in deeper water locations further offshore. This is adding significant uncertainty to the geotechnical design of monopiles used as foundations for these systems. Soil testing becomes more challenging, rigid monopile behavior is less certain, and design methods are being applied outside the bounds of the datasets from which they were originally derived. This paper examines the potential impact of certain elements of geotechnical uncertainty on monotonic load–displacement behavior and design system natural frequency of an example monopile-supported offshore wind turbine (OWT). Geotechnical uncertainty is considered in terms of spatial variability in soil properties derived from cone penetration tests (CPT), parameter transformation uncertainty using the rigidity index, and design choice for subgrade reaction modeling. Results suggest that spatial variability in CPT properties exhibits limited impact on design load–displacement characteristics of monopiles as vertical spatial variability tends to be averaged out in the process to develop discrete soil reaction-lateral displacement (p-y) models. This highlights a potential issue whereby localized variations in soil properties may not be captured in certain models. Spatial variability in CPT data has a noticeable effect on predicted system frequency responses of OWTs employing a subgrade reaction model approach, and the influence of subgrade reaction model choice is significant. The purpose of this paper is to investigate the effect of uncertainty in soil data, model transformation, and design model choice on resulting structural behavior for a subset of available design approaches. It should be noted that significant further uncertainty exists and a wide variety of alternative models can be used by designers, so the results should be interpreted qualitatively.
    • Download: (1.657Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Geotechnical Uncertainty on the Preliminary Design of Monopiles Supporting Offshore Wind Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278860
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorReale, Cormac
    contributor authorTott-Buswell, Jacques
    contributor authorPrendergast, Luke J.
    date accessioned2022-02-06T05:49:40Z
    date available2022-02-06T05:49:40Z
    date copyright7/21/2021 12:00:00 AM
    date issued2021
    identifier issn2332-9017
    identifier otherrisk_007_04_040903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278860
    description abstractThe growing demand for clean renewable energy sources and the lack of suitable nearshore sites are moving the offshore wind industry toward developing larger wind turbines in deeper water locations further offshore. This is adding significant uncertainty to the geotechnical design of monopiles used as foundations for these systems. Soil testing becomes more challenging, rigid monopile behavior is less certain, and design methods are being applied outside the bounds of the datasets from which they were originally derived. This paper examines the potential impact of certain elements of geotechnical uncertainty on monotonic load–displacement behavior and design system natural frequency of an example monopile-supported offshore wind turbine (OWT). Geotechnical uncertainty is considered in terms of spatial variability in soil properties derived from cone penetration tests (CPT), parameter transformation uncertainty using the rigidity index, and design choice for subgrade reaction modeling. Results suggest that spatial variability in CPT properties exhibits limited impact on design load–displacement characteristics of monopiles as vertical spatial variability tends to be averaged out in the process to develop discrete soil reaction-lateral displacement (p-y) models. This highlights a potential issue whereby localized variations in soil properties may not be captured in certain models. Spatial variability in CPT data has a noticeable effect on predicted system frequency responses of OWTs employing a subgrade reaction model approach, and the influence of subgrade reaction model choice is significant. The purpose of this paper is to investigate the effect of uncertainty in soil data, model transformation, and design model choice on resulting structural behavior for a subset of available design approaches. It should be noted that significant further uncertainty exists and a wide variety of alternative models can be used by designers, so the results should be interpreted qualitatively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Geotechnical Uncertainty on the Preliminary Design of Monopiles Supporting Offshore Wind Turbines
    typeJournal Paper
    journal volume7
    journal issue4
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4051418
    journal fristpage040903-1
    journal lastpage040903-10
    page10
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2021:;volume( 007 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian