YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Quantification for Fatigue Life of Offshore Wind Turbine Structure

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2021:;volume( 007 ):;issue: 004::page 040901-1
    Author:
    Nispel, Abraham
    ,
    Ekwaro-Osire, Stephen
    ,
    Dias, João Paulo
    ,
    Cunha, Americo, Jr.
    DOI: 10.1115/1.4051162
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study aims to address the question: can the structural reliability of an offshore wind turbine (OWT) under fatigue loading conditions be predicted more consistently? To respond to that question this study addresses the following specific aims: (1) to obtain a systematic approach that takes into consideration the amount of information available for the uncertainty modeling of the model input parameters and (2) to determine the impact of the most sensitive input parameters on the structural reliability of the OWT through a surrogate model. First, a coupled model to determine the fatigue life of the support structure considering the soil-structure interaction under 15 different loading conditions was developed. Second, a sensitivity scheme using two global analyses was developed to consistently establish the most and least important input parameters of the model. Third, systematic uncertainty quantification (UQ) scheme was employed to model the uncertainties of model input parameters based on their available—data-driven and physics-informed—information. Finally, the impact of the proposed UQ framework on the OWT structural reliability was evaluated through the estimation of the probability of failure of the structure based on the fatigue limit state design criterion. The results show high sensitivity for the wind speed and moderate sensitivity for parameters usually considered as deterministic values in design standards. Additionally, it is shown that applying systematic UQ not only produces a more efficient and better approximation of the fatigue life under uncertainty, but also a more accurate estimation of the structural reliability of offshore wind turbine's structure during conceptual design. Consequently, more reliable, and robust estimations of the structural designs for large offshore wind turbines with limited information may be achieved during the early stages of design.
    • Download: (3.562Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Quantification for Fatigue Life of Offshore Wind Turbine Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278858
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorNispel, Abraham
    contributor authorEkwaro-Osire, Stephen
    contributor authorDias, João Paulo
    contributor authorCunha, Americo, Jr.
    date accessioned2022-02-06T05:49:36Z
    date available2022-02-06T05:49:36Z
    date copyright7/12/2021 12:00:00 AM
    date issued2021
    identifier issn2332-9017
    identifier otherrisk_007_04_040901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278858
    description abstractThis study aims to address the question: can the structural reliability of an offshore wind turbine (OWT) under fatigue loading conditions be predicted more consistently? To respond to that question this study addresses the following specific aims: (1) to obtain a systematic approach that takes into consideration the amount of information available for the uncertainty modeling of the model input parameters and (2) to determine the impact of the most sensitive input parameters on the structural reliability of the OWT through a surrogate model. First, a coupled model to determine the fatigue life of the support structure considering the soil-structure interaction under 15 different loading conditions was developed. Second, a sensitivity scheme using two global analyses was developed to consistently establish the most and least important input parameters of the model. Third, systematic uncertainty quantification (UQ) scheme was employed to model the uncertainties of model input parameters based on their available—data-driven and physics-informed—information. Finally, the impact of the proposed UQ framework on the OWT structural reliability was evaluated through the estimation of the probability of failure of the structure based on the fatigue limit state design criterion. The results show high sensitivity for the wind speed and moderate sensitivity for parameters usually considered as deterministic values in design standards. Additionally, it is shown that applying systematic UQ not only produces a more efficient and better approximation of the fatigue life under uncertainty, but also a more accurate estimation of the structural reliability of offshore wind turbine's structure during conceptual design. Consequently, more reliable, and robust estimations of the structural designs for large offshore wind turbines with limited information may be achieved during the early stages of design.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUncertainty Quantification for Fatigue Life of Offshore Wind Turbine Structure
    typeJournal Paper
    journal volume7
    journal issue4
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4051162
    journal fristpage040901-1
    journal lastpage040901-16
    page16
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2021:;volume( 007 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian