YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Methods to Compute the Coriolis Matrix and Christoffel Symbols for Rigid-Body Systems

    Source: Journal of Computational and Nonlinear Dynamics:;2021:;volume( 016 ):;issue: 009::page 091004-1
    Author:
    Echeandia, Sebastian
    ,
    Wensing, Patrick M.
    DOI: 10.1115/1.4051169
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article presents methods to efficiently compute the Coriolis matrix and underlying Christoffel symbols (of the first kind) for tree-structure rigid-body systems. The algorithms can be executed purely numerically, without requiring partial derivatives as in unscalable symbolic techniques. The computations share a recursive structure in common with classical methods such as the composite-rigid-body algorithm and are of the lowest possible order: O(Nd) for the Coriolis matrix and O(Nd2) for the Christoffel symbols, where N is the number of bodies and d is the depth of the kinematic tree. Implementation in C/C++ shows computation times of the order of 10–20 μs for the Coriolis matrix and 40–120 μs for the Christoffel symbols on systems with 20-degrees-of-freedom (DoF). The results demonstrate feasibility for the adoption of these algorithms within high-rate (>1 kHz) loops for model-based control applications.
    • Download: (764.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Methods to Compute the Coriolis Matrix and Christoffel Symbols for Rigid-Body Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278852
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorEcheandia, Sebastian
    contributor authorWensing, Patrick M.
    date accessioned2022-02-06T05:49:26Z
    date available2022-02-06T05:49:26Z
    date copyright7/12/2021 12:00:00 AM
    date issued2021
    identifier issn1555-1415
    identifier othercnd_016_09_091004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278852
    description abstractThis article presents methods to efficiently compute the Coriolis matrix and underlying Christoffel symbols (of the first kind) for tree-structure rigid-body systems. The algorithms can be executed purely numerically, without requiring partial derivatives as in unscalable symbolic techniques. The computations share a recursive structure in common with classical methods such as the composite-rigid-body algorithm and are of the lowest possible order: O(Nd) for the Coriolis matrix and O(Nd2) for the Christoffel symbols, where N is the number of bodies and d is the depth of the kinematic tree. Implementation in C/C++ shows computation times of the order of 10–20 μs for the Coriolis matrix and 40–120 μs for the Christoffel symbols on systems with 20-degrees-of-freedom (DoF). The results demonstrate feasibility for the adoption of these algorithms within high-rate (>1 kHz) loops for model-based control applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Methods to Compute the Coriolis Matrix and Christoffel Symbols for Rigid-Body Systems
    typeJournal Paper
    journal volume16
    journal issue9
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4051169
    journal fristpage091004-1
    journal lastpage091004-9
    page9
    treeJournal of Computational and Nonlinear Dynamics:;2021:;volume( 016 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian