YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multi-Objective Optimization of Tree Trunk Axes in Glulam Beam Design Considering Fuzzy Probability-Based Random Fields

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2021:;volume( 007 ):;issue: 002::page 020913-1
    Author:
    Schietzold, F. Niklas
    ,
    Graf, Wolfgang
    ,
    Kaliske, Michael
    DOI: 10.1115/1.4050370
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Deterministic design and a priori parameters are used in traditional optimization approaches. The material characteristics of solid wood are not deterministic in reality. Hence, realistic optimization and simulation methods need to take the uncertainties of parameters into account. The uncertainty characteristics of wood are mainly originated in natural variation. In addition to this, incertitudes from lack of knowledge are inherent. Accordingly, the aleatoric approach of randomness can be expanded to a polymorphic uncertainty model. Fuzzy probability-based randomness is used in this work. Therefore, the epistemic approach of fuzziness is taken into account. The distribution functions of random variables are parametrized by fuzzy variables. So coupling of both, aleatoric and epistemic uncertainties, is involved. Interactions of fuzzy variables and crosscorrelations of random variables are considered among and within the parameters. Crosscorrelated random fields are used to represent spatial variation of material parameters. The autocovariance structures are modeled structurally dependent on the tree trunk axes. Finite element method is applied as deterministic basic solution of a loaded timber structure. A local orthotropic material formulation with respect to specifically located tree trunk axes is used. The optimal positions of the tree trunk axes for each wooden log are examined as design parameters. Polymorphic uncertainty is used to describe a priori parameters. The developed methods for uncertainty analysis are embedded in an automated and parallelized optimization processing. An analysis of a two-tier glulam beam, according to a purlin of a timber roof construction, is shown as numerical example for the optimization framework.
    • Download: (1.780Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multi-Objective Optimization of Tree Trunk Axes in Glulam Beam Design Considering Fuzzy Probability-Based Random Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278840
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorSchietzold, F. Niklas
    contributor authorGraf, Wolfgang
    contributor authorKaliske, Michael
    date accessioned2022-02-06T05:49:11Z
    date available2022-02-06T05:49:11Z
    date copyright4/23/2021 12:00:00 AM
    date issued2021
    identifier issn2332-9017
    identifier otherrisk_007_02_020913.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278840
    description abstractDeterministic design and a priori parameters are used in traditional optimization approaches. The material characteristics of solid wood are not deterministic in reality. Hence, realistic optimization and simulation methods need to take the uncertainties of parameters into account. The uncertainty characteristics of wood are mainly originated in natural variation. In addition to this, incertitudes from lack of knowledge are inherent. Accordingly, the aleatoric approach of randomness can be expanded to a polymorphic uncertainty model. Fuzzy probability-based randomness is used in this work. Therefore, the epistemic approach of fuzziness is taken into account. The distribution functions of random variables are parametrized by fuzzy variables. So coupling of both, aleatoric and epistemic uncertainties, is involved. Interactions of fuzzy variables and crosscorrelations of random variables are considered among and within the parameters. Crosscorrelated random fields are used to represent spatial variation of material parameters. The autocovariance structures are modeled structurally dependent on the tree trunk axes. Finite element method is applied as deterministic basic solution of a loaded timber structure. A local orthotropic material formulation with respect to specifically located tree trunk axes is used. The optimal positions of the tree trunk axes for each wooden log are examined as design parameters. Polymorphic uncertainty is used to describe a priori parameters. The developed methods for uncertainty analysis are embedded in an automated and parallelized optimization processing. An analysis of a two-tier glulam beam, according to a purlin of a timber roof construction, is shown as numerical example for the optimization framework.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMulti-Objective Optimization of Tree Trunk Axes in Glulam Beam Design Considering Fuzzy Probability-Based Random Fields
    typeJournal Paper
    journal volume7
    journal issue2
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4050370
    journal fristpage020913-1
    journal lastpage020913-10
    page10
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2021:;volume( 007 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian