YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Development Strategy for Structural Health Monitoring Applications1

    Source: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2021:;volume( 004 ):;issue: 004::page 041012-1
    Author:
    Cawley, Peter
    DOI: 10.1115/1.4051974
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Permanently installed structural health monitoring (SHM) systems are now a viable alternative to traditional periodic inspection (nondestructive testing (NDT)). However, their industrial use is limited, and this article reviews the steps required in developing practical SHM systems. The transducers used in SHM are fixed in location, whereas in NDT, they are generally scanned. The aim is to reach similar performance with high temporal frequency, low spatial frequency SHM data to that achievable with conventional high spatial frequency, and low temporal frequency NDT inspections. It is shown that this can be done via change tracking algorithms such as the generalized likelihood ratio (GLR), but this depends on the input data being normally distributed, which can only be achieved if signal changes due to variations in the operating conditions are satisfactorily compensated; there has been much recent progress on this topic, and this is reviewed. Since SHM systems can generate large volumes of data, it is essential to convert the data to actionable information, and this step must be addressed in the SHM system design. It is also essential to validate the performance of installed SHM systems, and a methodology analogous to the model-assisted probability of detection (POD) (MAPOD) scheme used in NDT has been proposed. This uses measurements obtained from the SHM system installed on a typical undamaged structure to capture signal changes due to environmental and other effects and to superpose the signal due to damage growth obtained from finite element predictions. There is a substantial research agenda to support the wider adoption of SHM, and this is discussed in this study.
    • Download: (969.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Development Strategy for Structural Health Monitoring Applications1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278767
    Collections
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems

    Show full item record

    contributor authorCawley, Peter
    date accessioned2022-02-06T05:47:25Z
    date available2022-02-06T05:47:25Z
    date copyright8/27/2021 12:00:00 AM
    date issued2021
    identifier issn2572-3901
    identifier othernde_4_4_041012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278767
    description abstractPermanently installed structural health monitoring (SHM) systems are now a viable alternative to traditional periodic inspection (nondestructive testing (NDT)). However, their industrial use is limited, and this article reviews the steps required in developing practical SHM systems. The transducers used in SHM are fixed in location, whereas in NDT, they are generally scanned. The aim is to reach similar performance with high temporal frequency, low spatial frequency SHM data to that achievable with conventional high spatial frequency, and low temporal frequency NDT inspections. It is shown that this can be done via change tracking algorithms such as the generalized likelihood ratio (GLR), but this depends on the input data being normally distributed, which can only be achieved if signal changes due to variations in the operating conditions are satisfactorily compensated; there has been much recent progress on this topic, and this is reviewed. Since SHM systems can generate large volumes of data, it is essential to convert the data to actionable information, and this step must be addressed in the SHM system design. It is also essential to validate the performance of installed SHM systems, and a methodology analogous to the model-assisted probability of detection (POD) (MAPOD) scheme used in NDT has been proposed. This uses measurements obtained from the SHM system installed on a typical undamaged structure to capture signal changes due to environmental and other effects and to superpose the signal due to damage growth obtained from finite element predictions. There is a substantial research agenda to support the wider adoption of SHM, and this is discussed in this study.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Development Strategy for Structural Health Monitoring Applications1
    typeJournal Paper
    journal volume4
    journal issue4
    journal titleJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    identifier doi10.1115/1.4051974
    journal fristpage041012-1
    journal lastpage041012-10
    page10
    treeJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2021:;volume( 004 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian