YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Efficient Multi-Scale Modeling Method that Reveals Coupled Effects Between Surface Roughness and Roll-Stack Deformation in Cold Sheet Rolling

    Source: Journal of Manufacturing Science and Engineering:;2021:;volume( 143 ):;issue: 010::page 0101005-1
    Author:
    Zhang, Feng
    ,
    Malik, Arif S.
    DOI: 10.1115/1.4050714
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In thin-gauge cold rolling of metal sheet, the surface roughness of work rolls (WRs) is known to affect the rolled sheet surface morphology, the required rolling load, and the roll wear. While modeling of rough surfaces using statistical asperity theory has been widely applied to problems involving semi-infinite solids, the application of asperity distributions and their elastic-plastic behavior has not been considered in roll-stack models for cold sheet rolling. In this work, a simplified-mixed finite element method (SM-FEM) is combined with statistical elastic-plastic asperity theory to study contact interference and coupling effects between a rough work roll (WR) surface and the roll-stack mechanics in cold sheet rolling. By mixing equivalent rough surface contact foundations, Hertz foundations, and Timoshenko beam stiffness, an approach is created to efficiently model interactions between the micro-scale asperities and the macro-scale roll-stack deformation. Nonlinearities from elastic-plastic material behavior of the asperities and the sheet, as well as changing contact conditions along the roll length, are also accommodated. Performance of the multi-scale SM-FEM approach is made by comparison with a continuum finite element virtual material model. 3D studies for a 4-high mill reveal new multi-scale coupling behaviors, including nonuniform roughness transfer, and perturbations to the sheet thickness “crown” and contact force profiles. The described multi-scale SM-FEM approach is general and applies to rough surface contact problems involving plates and shear-deformable beams having multiple contact interfaces and arbitrary surface profiles.
    • Download: (1.146Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Efficient Multi-Scale Modeling Method that Reveals Coupled Effects Between Surface Roughness and Roll-Stack Deformation in Cold Sheet Rolling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278621
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorZhang, Feng
    contributor authorMalik, Arif S.
    date accessioned2022-02-06T05:43:25Z
    date available2022-02-06T05:43:25Z
    date copyright4/26/2021 12:00:00 AM
    date issued2021
    identifier issn1087-1357
    identifier othermanu_143_10_101005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278621
    description abstractIn thin-gauge cold rolling of metal sheet, the surface roughness of work rolls (WRs) is known to affect the rolled sheet surface morphology, the required rolling load, and the roll wear. While modeling of rough surfaces using statistical asperity theory has been widely applied to problems involving semi-infinite solids, the application of asperity distributions and their elastic-plastic behavior has not been considered in roll-stack models for cold sheet rolling. In this work, a simplified-mixed finite element method (SM-FEM) is combined with statistical elastic-plastic asperity theory to study contact interference and coupling effects between a rough work roll (WR) surface and the roll-stack mechanics in cold sheet rolling. By mixing equivalent rough surface contact foundations, Hertz foundations, and Timoshenko beam stiffness, an approach is created to efficiently model interactions between the micro-scale asperities and the macro-scale roll-stack deformation. Nonlinearities from elastic-plastic material behavior of the asperities and the sheet, as well as changing contact conditions along the roll length, are also accommodated. Performance of the multi-scale SM-FEM approach is made by comparison with a continuum finite element virtual material model. 3D studies for a 4-high mill reveal new multi-scale coupling behaviors, including nonuniform roughness transfer, and perturbations to the sheet thickness “crown” and contact force profiles. The described multi-scale SM-FEM approach is general and applies to rough surface contact problems involving plates and shear-deformable beams having multiple contact interfaces and arbitrary surface profiles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Efficient Multi-Scale Modeling Method that Reveals Coupled Effects Between Surface Roughness and Roll-Stack Deformation in Cold Sheet Rolling
    typeJournal Paper
    journal volume143
    journal issue10
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4050714
    journal fristpage0101005-1
    journal lastpage0101005-13
    page13
    treeJournal of Manufacturing Science and Engineering:;2021:;volume( 143 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian