YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Genetic Algorithm-Based Optimal Design of a Rolling-Flying Vehicle

    Source: Journal of Mechanisms and Robotics:;2021:;volume( 013 ):;issue: 005::page 050907-1
    Author:
    Jenkins, Tyler
    ,
    Atay, Stefan
    ,
    Buckner, Gregory
    ,
    Bryant, Matthew
    DOI: 10.1115/1.4050811
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work describes a design optimization framework for a rolling-flying vehicle consisting of a conventional quadrotor configuration with passive wheels. For a baseline comparison, the optimization approach is also applied for a conventional (flight-only) quadrotor. Pareto-optimal vehicles with maximum range and minimum size are created using a hybrid multi-objective genetic algorithm in conjunction with multi-physics system models. A low Reynolds number blade element momentum theory aerodynamic model is used with a brushless DC motor model, a terramechanics model, and a vehicle dynamics model to simulate the vehicle range under any operating angle-of-attack and forward velocity. To understand the tradeoff between vehicle size and operating range, variations in Pareto-optimal designs are presented as functions of vehicle size. A sensitivity analysis is used to better understand the impact of deviating from the optimal vehicle design variables. This work builds on current approaches in quadrotor optimization by leveraging a variety of models and formulations from the literature and demonstrating the implementation of various design constraints. It also improves upon current ad hoc rolling-flying vehicle designs created in previous studies. Results show the importance of accounting for oft-neglected component constraints in the design of high-range quadrotor vehicles. The optimal vehicle mechanical configuration is shown to be independent of operating point, stressing the importance of a well-matched, optimized propulsion system. By emphasizing key constraints that affect the maximum and nominal vehicle operating points, an optimization framework is constructed that can be used for rolling-flying vehicles and conventional multi-rotors.
    • Download: (1.219Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Genetic Algorithm-Based Optimal Design of a Rolling-Flying Vehicle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278589
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorJenkins, Tyler
    contributor authorAtay, Stefan
    contributor authorBuckner, Gregory
    contributor authorBryant, Matthew
    date accessioned2022-02-06T05:42:32Z
    date available2022-02-06T05:42:32Z
    date copyright6/3/2021 12:00:00 AM
    date issued2021
    identifier issn1942-4302
    identifier otherjmr_13_5_050907.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278589
    description abstractThis work describes a design optimization framework for a rolling-flying vehicle consisting of a conventional quadrotor configuration with passive wheels. For a baseline comparison, the optimization approach is also applied for a conventional (flight-only) quadrotor. Pareto-optimal vehicles with maximum range and minimum size are created using a hybrid multi-objective genetic algorithm in conjunction with multi-physics system models. A low Reynolds number blade element momentum theory aerodynamic model is used with a brushless DC motor model, a terramechanics model, and a vehicle dynamics model to simulate the vehicle range under any operating angle-of-attack and forward velocity. To understand the tradeoff between vehicle size and operating range, variations in Pareto-optimal designs are presented as functions of vehicle size. A sensitivity analysis is used to better understand the impact of deviating from the optimal vehicle design variables. This work builds on current approaches in quadrotor optimization by leveraging a variety of models and formulations from the literature and demonstrating the implementation of various design constraints. It also improves upon current ad hoc rolling-flying vehicle designs created in previous studies. Results show the importance of accounting for oft-neglected component constraints in the design of high-range quadrotor vehicles. The optimal vehicle mechanical configuration is shown to be independent of operating point, stressing the importance of a well-matched, optimized propulsion system. By emphasizing key constraints that affect the maximum and nominal vehicle operating points, an optimization framework is constructed that can be used for rolling-flying vehicles and conventional multi-rotors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGenetic Algorithm-Based Optimal Design of a Rolling-Flying Vehicle
    typeJournal Paper
    journal volume13
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4050811
    journal fristpage050907-1
    journal lastpage050907-14
    page14
    treeJournal of Mechanisms and Robotics:;2021:;volume( 013 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian