Show simple item record

contributor authorBellantone, Vincenzo
contributor authorLavecchia, Fulvio
contributor authorSurace, Rossella
contributor authorSpadavecchia, Onofrio
contributor authorModica, Francesco
contributor authorGuerra, Maria Grazia
contributor authorFassi, Irene
contributor authorGalantucci, Luigi Maria
date accessioned2022-02-06T05:41:33Z
date available2022-02-06T05:41:33Z
date copyright7/20/2021 12:00:00 AM
date issued2021
identifier issn2166-0468
identifier otherjmnm_009_03_030903.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278556
description abstractMicro-applications, especially in biomedical and optical sectors, require the fabrication of thin polymeric parts which can be commonly realized by micro-injection molding process. However, this process is characterized by a relevant constraint regarding the tooling. Indeed, the design and manufacturing of molds could be a very time-consuming step and so, a significant limitation for the rapid development of new products. Moreover, if the design displays challenging microfeatures, their realization could involve the use of more than one mold for the fabrication of a single thin part. Therefore, proper integration of different manufacturing microtechnologies may represent an advantageous method to realize such polymeric thin microfeatures. In this work, a micromanufacturing process chain including stereolithography, micromilling, and micro-injection molding is reported. The mold for the micro-injection molding process was fabricated by means of stereolithography and micromilling, which allowed us to produce low-cost reconfigurable modular mold, composed of insert support and a removable insert. The assessment of the proposed process chain was carried out by evaluating the dimensions and the surface finishing and texturing of the milled mold cavities and molded components. Finally, a brief economic analysis compares three process chains for fabricating the micromold showing that the proposed one reduces the manufacturing cost by almost 61% with the same production time.
publisherThe American Society of Mechanical Engineers (ASME)
titleDesign and Experimental Validation of a Process Chain for Thin Components Manufacturing by Micro Injection Molding Process
typeJournal Paper
journal volume9
journal issue3
journal titleJournal of Micro and Nano-Manufacturing
identifier doi10.1115/1.4051485
journal fristpage030903-1
journal lastpage030903-9
page9
treeJournal of Micro and Nano-Manufacturing:;2021:;volume( 009 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record