YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Fuel Properties on Gasoline Direct Injection Particulate Matter Emissions Over First 200 s of World-Harmonized Light-Duty Test Procedure Using an Engine Dynamometer and Novel “Virtual Drivetrain” Software

    Source: Journal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 010::page 0102307-1
    Author:
    Bock, Noah R.
    ,
    Northrop, William F.
    DOI: 10.1115/1.4050576
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The influence of fuel properties on particulate matter (PM) emissions from a catalytic gasoline particulate filter (GPF) equipped gasoline direct injection (GDI) engine was investigated using novel “virtual drivetrain” software and an engine mated to an engine dynamometer. The virtual drivetrain software was developed in labview to operate the engine on an engine dynamometer as if it were in a vehicle undergoing a driving cycle. The software uses a physics-based approach to determine vehicle acceleration and speed based on engine load and a programed “shift” schedule to control engine speed. The software uses a control algorithm to modulate engine load and braking to match a calculated vehicle speed with the prescribed speed trace of the driving cycle of choice. The first 200 s of the World-harmonized Light-duty Test Procedure (WLTP) driving cycle was tested using six different fuel formulations of varying volatility, aromaticity, and ethanol concentration. The first 200 s of the WLTP was chosen as the test condition because it is the most problematic section of the driving cycle for controlling PM emissions due to the cold start and cold drive off. It was found that there was a strong correlation between aromaticity of the fuel and the engine-out PM emissions, with the highest emitting fuel producing more than double the mass emissions of the low PM production fuel. However, the post-GPF PM emissions depended greatly on the soot loading state of the GPF. The fuel with the highest engine-out PM emissions produced comparable post-GPF emissions to the lowest PM producing fuel over the driving cycle when the GPF was loaded over three cycles with the respective fuels. These results demonstrate the importance of GPF loading state when aftertreatment systems are used for PM reduction. It also shows that GPF control may be more important than fuel properties, and that regulatory compliance for PM can be achieved with proper GPF control calibration irrespective of fuel type.
    • Download: (913.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Fuel Properties on Gasoline Direct Injection Particulate Matter Emissions Over First 200 s of World-Harmonized Light-Duty Test Procedure Using an Engine Dynamometer and Novel “Virtual Drivetrain” Software

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278451
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorBock, Noah R.
    contributor authorNorthrop, William F.
    date accessioned2022-02-06T05:38:25Z
    date available2022-02-06T05:38:25Z
    date copyright4/19/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_143_10_102307.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278451
    description abstractThe influence of fuel properties on particulate matter (PM) emissions from a catalytic gasoline particulate filter (GPF) equipped gasoline direct injection (GDI) engine was investigated using novel “virtual drivetrain” software and an engine mated to an engine dynamometer. The virtual drivetrain software was developed in labview to operate the engine on an engine dynamometer as if it were in a vehicle undergoing a driving cycle. The software uses a physics-based approach to determine vehicle acceleration and speed based on engine load and a programed “shift” schedule to control engine speed. The software uses a control algorithm to modulate engine load and braking to match a calculated vehicle speed with the prescribed speed trace of the driving cycle of choice. The first 200 s of the World-harmonized Light-duty Test Procedure (WLTP) driving cycle was tested using six different fuel formulations of varying volatility, aromaticity, and ethanol concentration. The first 200 s of the WLTP was chosen as the test condition because it is the most problematic section of the driving cycle for controlling PM emissions due to the cold start and cold drive off. It was found that there was a strong correlation between aromaticity of the fuel and the engine-out PM emissions, with the highest emitting fuel producing more than double the mass emissions of the low PM production fuel. However, the post-GPF PM emissions depended greatly on the soot loading state of the GPF. The fuel with the highest engine-out PM emissions produced comparable post-GPF emissions to the lowest PM producing fuel over the driving cycle when the GPF was loaded over three cycles with the respective fuels. These results demonstrate the importance of GPF loading state when aftertreatment systems are used for PM reduction. It also shows that GPF control may be more important than fuel properties, and that regulatory compliance for PM can be achieved with proper GPF control calibration irrespective of fuel type.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Fuel Properties on Gasoline Direct Injection Particulate Matter Emissions Over First 200 s of World-Harmonized Light-Duty Test Procedure Using an Engine Dynamometer and Novel “Virtual Drivetrain” Software
    typeJournal Paper
    journal volume143
    journal issue10
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4050576
    journal fristpage0102307-1
    journal lastpage0102307-9
    page9
    treeJournal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian