YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Running Biomechanics of Adolescents With Autism Spectrum Disorder

    Source: Journal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 011::page 0111005-1
    Author:
    Bennett, Hunter J.
    ,
    Haegele, Justin A.
    DOI: 10.1115/1.4051346
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Research examining gait biomechanics of persons with autism spectrum disorder (ASD) has grown significantly in recent years and has demonstrated that persons with ASD walk at slower self-selected speeds and with shorter strides, wider step widths, and reduced lower extremity range of motion and moments compared to neurotypical controls. In contrast to walking, running has yet to be examined in persons with ASD. The purpose of this study was to examine lower extremity running biomechanics in adolescents (13–18-year-olds) with ASD and matched (age, sex, and body mass index (BMI)) neurotypical controls. Three-dimensional kinematics and ground reaction forces (GRFs) were recorded while participants ran at two matched speeds: self-selected speed of adolescents with ASD and at 3.0 m/s. Sagittal and frontal plane lower extremity biomechanics and vertical GRF waveforms were compared using two-way analyses of variances (ANOVAs) via statistical parametric mapping (SPM). Adolescents with ASD ran with reduced stride length at self-selected speed (0.29 m) and reduced vertical displacement (2.1 cm), loading-propulsion GRFs (by 14.5%), propulsion plantarflexion moments (18.5%), loading-propulsion hip abduction moments (44.4%), and loading knee abduction moments (69.4%) at both speeds. Running at 3.0 m/s increased sagittal plane hip and knee moments surrounding initial contact (both 10.4%) and frontal plane knee angles during midstance (2.9 deg) and propulsion (2.8 deg) compared to self-selected speeds. Reduced contributions from primarily the ankle plantarflexion but also knee abduction and hip abduction moments likely reduced the vertical GRF and displacement. As differences favored reduced loading, youth with ASD can safely be encouraged to engage in running as a physical activity.
    • Download: (1.493Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Running Biomechanics of Adolescents With Autism Spectrum Disorder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278441
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBennett, Hunter J.
    contributor authorHaegele, Justin A.
    date accessioned2022-02-06T05:38:06Z
    date available2022-02-06T05:38:06Z
    date copyright7/19/2021 12:00:00 AM
    date issued2021
    identifier issn0148-0731
    identifier otherbio_143_11_111005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278441
    description abstractResearch examining gait biomechanics of persons with autism spectrum disorder (ASD) has grown significantly in recent years and has demonstrated that persons with ASD walk at slower self-selected speeds and with shorter strides, wider step widths, and reduced lower extremity range of motion and moments compared to neurotypical controls. In contrast to walking, running has yet to be examined in persons with ASD. The purpose of this study was to examine lower extremity running biomechanics in adolescents (13–18-year-olds) with ASD and matched (age, sex, and body mass index (BMI)) neurotypical controls. Three-dimensional kinematics and ground reaction forces (GRFs) were recorded while participants ran at two matched speeds: self-selected speed of adolescents with ASD and at 3.0 m/s. Sagittal and frontal plane lower extremity biomechanics and vertical GRF waveforms were compared using two-way analyses of variances (ANOVAs) via statistical parametric mapping (SPM). Adolescents with ASD ran with reduced stride length at self-selected speed (0.29 m) and reduced vertical displacement (2.1 cm), loading-propulsion GRFs (by 14.5%), propulsion plantarflexion moments (18.5%), loading-propulsion hip abduction moments (44.4%), and loading knee abduction moments (69.4%) at both speeds. Running at 3.0 m/s increased sagittal plane hip and knee moments surrounding initial contact (both 10.4%) and frontal plane knee angles during midstance (2.9 deg) and propulsion (2.8 deg) compared to self-selected speeds. Reduced contributions from primarily the ankle plantarflexion but also knee abduction and hip abduction moments likely reduced the vertical GRF and displacement. As differences favored reduced loading, youth with ASD can safely be encouraged to engage in running as a physical activity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRunning Biomechanics of Adolescents With Autism Spectrum Disorder
    typeJournal Paper
    journal volume143
    journal issue11
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4051346
    journal fristpage0111005-1
    journal lastpage0111005-10
    page10
    treeJournal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian