YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Static Response Analysis of a Dual Crane System Using Fuzzy Parameters

    Source: Journal of Computing and Information Science in Engineering:;2021:;volume( 021 ):;issue: 006::page 061006-1
    Author:
    Zhou, Bin
    ,
    Zi, Bin
    ,
    Zhu, Weidong
    DOI: 10.1115/1.4050618
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Static response analysis of a dual crane system (DCS) is conducted using fuzzy parameters. The fuzzy static equilibrium equation is established and two fuzzy perturbation methods, including the compound function/fuzzy perturbation method (CFFPM) and modified compound function/fuzzy perturbation method (MCFFPM), are presented. The CFFPM uses the level-cut technique to transform the fuzzy static equilibrium equation into several interval equations with different cut levels. The interval Jacobian matrix, the first and second interval virtual work vectors, and the inverse of interval Jacobian matrix are approximated by the first-order Taylor series and Neumann series. The fuzzy static response field for every cut level is obtained by a synthesis of the compound function technique, the interval perturbation method, and the fuzzy algorithm. In the MCFFPM, the fuzzy static response field for every cut level is derived based on the surface rail generation method, the modified Sherman–Morrison–Woodbury (SMW) formula, and the fuzzy theory. Compared with the Monte Carlo method (MCM), numerical examples demonstrate that the MCFFPM has a better accuracy than the CFFPM and both of them bring a higher efficiency than the MCM, especially when it comes to effects of fuzzy parameters on uncertainty quantification (UQ) of the static response of the DCS.
    • Download: (1.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Static Response Analysis of a Dual Crane System Using Fuzzy Parameters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278420
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorZhou, Bin
    contributor authorZi, Bin
    contributor authorZhu, Weidong
    date accessioned2022-02-06T05:37:33Z
    date available2022-02-06T05:37:33Z
    date copyright5/13/2021 12:00:00 AM
    date issued2021
    identifier issn1530-9827
    identifier otherjcise_21_6_061006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278420
    description abstractStatic response analysis of a dual crane system (DCS) is conducted using fuzzy parameters. The fuzzy static equilibrium equation is established and two fuzzy perturbation methods, including the compound function/fuzzy perturbation method (CFFPM) and modified compound function/fuzzy perturbation method (MCFFPM), are presented. The CFFPM uses the level-cut technique to transform the fuzzy static equilibrium equation into several interval equations with different cut levels. The interval Jacobian matrix, the first and second interval virtual work vectors, and the inverse of interval Jacobian matrix are approximated by the first-order Taylor series and Neumann series. The fuzzy static response field for every cut level is obtained by a synthesis of the compound function technique, the interval perturbation method, and the fuzzy algorithm. In the MCFFPM, the fuzzy static response field for every cut level is derived based on the surface rail generation method, the modified Sherman–Morrison–Woodbury (SMW) formula, and the fuzzy theory. Compared with the Monte Carlo method (MCM), numerical examples demonstrate that the MCFFPM has a better accuracy than the CFFPM and both of them bring a higher efficiency than the MCM, especially when it comes to effects of fuzzy parameters on uncertainty quantification (UQ) of the static response of the DCS.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStatic Response Analysis of a Dual Crane System Using Fuzzy Parameters
    typeJournal Paper
    journal volume21
    journal issue6
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4050618
    journal fristpage061006-1
    journal lastpage061006-26
    page26
    treeJournal of Computing and Information Science in Engineering:;2021:;volume( 021 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian