YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ultra-High Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method

    Source: Journal of Heat Transfer:;2021:;volume( 143 ):;issue: 010::page 0104502-1
    Author:
    Hayes, Michael
    ,
    Masoomi, Faezeh
    ,
    Schimmels, Philipp
    ,
    Randhir, Kelvin
    ,
    Klausner, James
    ,
    Petrasch, Joerg
    DOI: 10.1115/1.4052081
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pelletized magnesium manganese oxide shows promise for high temperature thermochemical energy storage. It can be thermally reduced in the temperature range between 1250 °C and 1500 °C and re-oxidized with air at typical gas-turbine inlet pressures (1–25 bar) in the temperature range between 600 °C and 1500 °C. The combined thermal and chemical volumetric energy density is approximately 2300 MJ/m3. The rate at which a thermochemical storage module can be charged is limited by heat transfer inside the solid packed bed. Hence, the effective thermal conductivity of packed beds of magnesium-manganese oxide pellets is a crucial parameter for engineering Mg-Mn-O redox storage devices. We have measured the effective thermal conductivity of a packed bed of 3.66 ± 0.516 mm sized magnesium manganese oxide (Mn to Mg molar ratio of 1:1) pellets in the temperature range of 300–1400 °C. Since the material is electrically conductive at temperatures above 600 °C, the sheathed transient hot wire method is used for measurements. Raw data is analyzed using the Blackwell solution to extract the bed thermal conductivity. The effective thermal conductivity standard deviation is less than 10% for a minimum of three repeat measurements at each temperature. Experimental results show an increase in the effective thermal conductivity with temperature from 0.50 W/m °C around 300 °C to 1.81 W/m °C close to 1400 °C. We propose a dual porosity model to express the effective thermal conductivity as a function of temperature. This model also considers the effect of radiation within the bed, as this is the dominant heat transfer mode at high temperatures. The proposed model accounts for microscale pellet porosity, macroscale bed porosity, pellet size, solid thermal conductivity (phonon transport), and radiation (photon transport). The coefficient of determination between the proposed model and the experimental results is greater than 0.90.
    • Download: (1.451Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ultra-High Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278336
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorHayes, Michael
    contributor authorMasoomi, Faezeh
    contributor authorSchimmels, Philipp
    contributor authorRandhir, Kelvin
    contributor authorKlausner, James
    contributor authorPetrasch, Joerg
    date accessioned2022-02-06T05:35:07Z
    date available2022-02-06T05:35:07Z
    date copyright9/8/2021 12:00:00 AM
    date issued2021
    identifier issn0022-1481
    identifier otherht_143_10_104502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278336
    description abstractPelletized magnesium manganese oxide shows promise for high temperature thermochemical energy storage. It can be thermally reduced in the temperature range between 1250 °C and 1500 °C and re-oxidized with air at typical gas-turbine inlet pressures (1–25 bar) in the temperature range between 600 °C and 1500 °C. The combined thermal and chemical volumetric energy density is approximately 2300 MJ/m3. The rate at which a thermochemical storage module can be charged is limited by heat transfer inside the solid packed bed. Hence, the effective thermal conductivity of packed beds of magnesium-manganese oxide pellets is a crucial parameter for engineering Mg-Mn-O redox storage devices. We have measured the effective thermal conductivity of a packed bed of 3.66 ± 0.516 mm sized magnesium manganese oxide (Mn to Mg molar ratio of 1:1) pellets in the temperature range of 300–1400 °C. Since the material is electrically conductive at temperatures above 600 °C, the sheathed transient hot wire method is used for measurements. Raw data is analyzed using the Blackwell solution to extract the bed thermal conductivity. The effective thermal conductivity standard deviation is less than 10% for a minimum of three repeat measurements at each temperature. Experimental results show an increase in the effective thermal conductivity with temperature from 0.50 W/m °C around 300 °C to 1.81 W/m °C close to 1400 °C. We propose a dual porosity model to express the effective thermal conductivity as a function of temperature. This model also considers the effect of radiation within the bed, as this is the dominant heat transfer mode at high temperatures. The proposed model accounts for microscale pellet porosity, macroscale bed porosity, pellet size, solid thermal conductivity (phonon transport), and radiation (photon transport). The coefficient of determination between the proposed model and the experimental results is greater than 0.90.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUltra-High Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method
    typeJournal Paper
    journal volume143
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4052081
    journal fristpage0104502-1
    journal lastpage0104502-6
    page6
    treeJournal of Heat Transfer:;2021:;volume( 143 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian