YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Influence of Real Gas Radiation on the Stability and Development of Benard Convection in a Two-Dimensional Layer

    Source: Journal of Heat Transfer:;2021:;volume( 143 ):;issue: 010::page 0102602-1
    Author:
    Webb, B. W.
    ,
    Solovjov, V. P.
    DOI: 10.1115/1.4051499
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The influence of real gas radiation on the thermal and hydrodynamic stability of a two-dimensional layer of radiatively participating H2O and/or CO2 heated from below is investigated. The nongray radiation effects of the two species are treated rigorously using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The phenomena are explored by solving the full coupled laminar equations of motion, energy, and radiative transfer from the low-Rayleigh number, pure conduction-radiation regime through the onset of buoyancy-induced flow to the developed Bénard convection regime. The evolution of the thermal, hydrodynamic, and radiative heating fields is studied, and the critical Rayleigh number is characterized as a function of participating gas species mole fraction, average layer gas temperature, layer thickness, wall emissivity, and total pressure. It is found that participating radiation in the medium has the effect of stabilizing the layer, delaying transition from a stable conduction regime to buoyancy-induced flow. The development of convective flow and temperature, along with the radiative heating are presented. It is found that the critical Rayleigh number in the radiatively participating gas layer can be more than an order of magnitude higher than the classical convection-only scenario. The onset of instability is found to depend on the species mole fractions, average gas temperature in the layer, wall emissivity, layer thickness, and total pressure. Generally, all other variables being the same, H2O has a greater stabilizing influence on the layer than CO2.
    • Download: (2.801Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Influence of Real Gas Radiation on the Stability and Development of Benard Convection in a Two-Dimensional Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278333
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorWebb, B. W.
    contributor authorSolovjov, V. P.
    date accessioned2022-02-06T05:35:03Z
    date available2022-02-06T05:35:03Z
    date copyright9/8/2021 12:00:00 AM
    date issued2021
    identifier issn0022-1481
    identifier otherht_143_10_102602.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278333
    description abstractThe influence of real gas radiation on the thermal and hydrodynamic stability of a two-dimensional layer of radiatively participating H2O and/or CO2 heated from below is investigated. The nongray radiation effects of the two species are treated rigorously using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The phenomena are explored by solving the full coupled laminar equations of motion, energy, and radiative transfer from the low-Rayleigh number, pure conduction-radiation regime through the onset of buoyancy-induced flow to the developed Bénard convection regime. The evolution of the thermal, hydrodynamic, and radiative heating fields is studied, and the critical Rayleigh number is characterized as a function of participating gas species mole fraction, average layer gas temperature, layer thickness, wall emissivity, and total pressure. It is found that participating radiation in the medium has the effect of stabilizing the layer, delaying transition from a stable conduction regime to buoyancy-induced flow. The development of convective flow and temperature, along with the radiative heating are presented. It is found that the critical Rayleigh number in the radiatively participating gas layer can be more than an order of magnitude higher than the classical convection-only scenario. The onset of instability is found to depend on the species mole fractions, average gas temperature in the layer, wall emissivity, layer thickness, and total pressure. Generally, all other variables being the same, H2O has a greater stabilizing influence on the layer than CO2.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Influence of Real Gas Radiation on the Stability and Development of Benard Convection in a Two-Dimensional Layer
    typeJournal Paper
    journal volume143
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4051499
    journal fristpage0102602-1
    journal lastpage0102602-13
    page13
    treeJournal of Heat Transfer:;2021:;volume( 143 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian