YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction

    Source: Journal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 009::page 094503-1
    Author:
    Khang, Alex
    ,
    Lejeune, Emma
    ,
    Abbaspour, Ali
    ,
    Howsmon, Daniel P.
    ,
    Sacks, Michael S.
    DOI: 10.1115/1.4050915
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Myofibroblasts are responsible for wound healing and tissue repair across all organ systems. In periods of growth and disease, myofibroblasts can undergo a phenotypic transition characterized by an increase in extracellular matrix (ECM) deposition rate, changes in various protein expression (e.g., alpha-smooth muscle actin (αSMA)), and elevated contractility. Cell shape is known to correlate closely with stress-fiber geometry and function and is thus a critical feature of cell biophysical state. However, the relationship between myofibroblast shape and contraction is complex, even as well in regards to steady-state contractile level (basal tonus). At present, the relationship between myofibroblast shape and basal tonus in three-dimensional (3D) environments is poorly understood. Herein, we utilize the aortic valve interstitial cell (AVIC) as a representative myofibroblast to investigate the relationship between basal tonus and overall cell shape. AVICs were embedded within 3D poly(ethylene glycol) (PEG) hydrogels containing degradable peptide crosslinkers, adhesive peptide sequences, and submicron fluorescent microspheres to track the local displacement field. We then developed a methodology to evaluate the correlation between overall AVIC shape and basal tonus induced contraction. We computed a volume averaged stretch tensor ⟨U⟩ for the volume occupied by the AVIC, which had three distinct eigenvalues (λ1,2,3=1.08,0.99, and 0.89), suggesting that AVIC shape is a result of anisotropic contraction. Furthermore, the direction of maximum contraction correlated closely with the longest axis of a bounding ellipsoid enclosing the AVIC. As gel-imbedded AVICs are known to be in a stable state by 3 days of incubation used herein, this finding suggests that the overall quiescent AVIC shape is driven by the underlying stress-fiber directional structure and potentially contraction level.
    • Download: (1.384Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278319
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorKhang, Alex
    contributor authorLejeune, Emma
    contributor authorAbbaspour, Ali
    contributor authorHowsmon, Daniel P.
    contributor authorSacks, Michael S.
    date accessioned2022-02-06T05:34:41Z
    date available2022-02-06T05:34:41Z
    date copyright5/18/2021 12:00:00 AM
    date issued2021
    identifier issn0148-0731
    identifier otherbio_143_09_094503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278319
    description abstractMyofibroblasts are responsible for wound healing and tissue repair across all organ systems. In periods of growth and disease, myofibroblasts can undergo a phenotypic transition characterized by an increase in extracellular matrix (ECM) deposition rate, changes in various protein expression (e.g., alpha-smooth muscle actin (αSMA)), and elevated contractility. Cell shape is known to correlate closely with stress-fiber geometry and function and is thus a critical feature of cell biophysical state. However, the relationship between myofibroblast shape and contraction is complex, even as well in regards to steady-state contractile level (basal tonus). At present, the relationship between myofibroblast shape and basal tonus in three-dimensional (3D) environments is poorly understood. Herein, we utilize the aortic valve interstitial cell (AVIC) as a representative myofibroblast to investigate the relationship between basal tonus and overall cell shape. AVICs were embedded within 3D poly(ethylene glycol) (PEG) hydrogels containing degradable peptide crosslinkers, adhesive peptide sequences, and submicron fluorescent microspheres to track the local displacement field. We then developed a methodology to evaluate the correlation between overall AVIC shape and basal tonus induced contraction. We computed a volume averaged stretch tensor ⟨U⟩ for the volume occupied by the AVIC, which had three distinct eigenvalues (λ1,2,3=1.08,0.99, and 0.89), suggesting that AVIC shape is a result of anisotropic contraction. Furthermore, the direction of maximum contraction correlated closely with the longest axis of a bounding ellipsoid enclosing the AVIC. As gel-imbedded AVICs are known to be in a stable state by 3 days of incubation used herein, this finding suggests that the overall quiescent AVIC shape is driven by the underlying stress-fiber directional structure and potentially contraction level.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4050915
    journal fristpage094503-1
    journal lastpage094503-8
    page8
    treeJournal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian