Show simple item record

contributor authorÆsøy, Eirik
contributor authorAguilar, José G.
contributor authorBothien, Mirko R.
contributor authorWorth, Nicholas A.
contributor authorDawson, James R.
date accessioned2022-02-06T05:32:44Z
date available2022-02-06T05:32:44Z
date copyright10/12/2021 12:00:00 AM
date issued2021
identifier issn0742-4795
identifier othergtp_143_12_121017.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278254
description abstractWe investigate the occurrence and source of modulations in the gain and phase of flame transfer functions (FTF) measured in perfectly premixed, bluff body stabilized CH4/H2 and pure H2 flames. The modulations are shown to be caused by flow disturbances originating from the upstream geometry, in particular the grub screws used to center the bluff body, indicative of a more generalized phenomenon of convective wave propagation. Velocity measurements are performed at various locations around the injector dump plane, inside the injector pipe, and in the wake of the bluff body to provide detailed insight into the flow. Peaks corresponding to natural shedding frequencies of the grub screws appear in the unforced velocity spectra and it is found that the magnitude of these convective modes depends on their location. Flame imaging and PIV measurements show that these disturbances do not show up in the mean velocity and flame shape which appear approximately axisymmetric. However, the urms and vrms fields capture a strong asymmetry due to convective disturbances. To further quantify the role of these convective disturbances, hydrodynamic transfer functions are constructed from the forced cold flow, and similar modulations observed in the FTFs are found. A strong correlation is obtained between the two transfer functions, subsequently, the modulations are shown to be centered on the vortex shedding frequency corresponding to the first convective mode. The reason behind the excitation of the first mode is due to a condition that states that for acoustic-convective interaction to be possible, the shedding (convective) frequency needs to be lower than the cutoff frequency of the flame response. This condition is shown to be more relevant for hydrogen flames compared to methane flames due to their shorter flame lengths and thus increased cutoff frequency.
publisherThe American Society of Mechanical Engineers (ASME)
titleAcoustic-Convective Interference in Transfer Functions of Methane/Hydrogen and Pure Hydrogen Flames
typeJournal Paper
journal volume143
journal issue12
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4051960
journal fristpage0121017-1
journal lastpage0121017-10
page10
treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record