| description abstract | In support of efforts to develop improved models of turbulent spray behavior and combustion in diesel engines, experimental data and analysis must be obtained for guidance and validation. For Reynolds-averaged Navier–Stokes (RANS)-based Computational fluid dynamics (CFD) modeling approaches, representative ensemble average experimental results are important. For high-fidelity models such as large eddy simulations (LES)-based CFD, precise individual experimental results are desirable. However, making comparisons between a given experiment and LES is a challenge since local parameters cannot be directly compared. In this work, an optically accessible constant pressure flow rig (CPFR) is utilized to acquire diesel-like fuel injection and reaction behavior simultaneously with three optical diagnostic techniques: rainbow Schlieren deflectometry (RSD), OH* chemiluminescence (OH*), and two-color pyrometry (2CP). The CPFR allows a large number of repeated injection experiments to be performed for statistical analysis and convergence using ensemble-averaging techniques, while maintaining highly repeatable test conditions. Even for stable test conditions, variations in local turbulent fuel–air mixing introduce variability, which manifests as significant differences in OH* and 2CP results. Experimental measurements of characteristic parameters including liquid and vapor jet penetration, liftoff length, soot temperature and concentration, and turbulent flame speed, along with the shot-to-shot variability of each dataset, are presented and discussed. A statistical method is utilized to analyze the extent of this variability, and to identify superlative injections within the dataset for discussion and analysis of shot-to-shot variations. | |