YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Tire Rotating Modeling Techniques Using Computational Fluid Dynamics1

    Source: Journal of Fluids Engineering:;2021:;volume( 143 ):;issue: 011::page 0111206-1
    Author:
    Fu, Gen
    ,
    Untaroiu, Alexandrina
    DOI: 10.1115/1.4051311
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fuel efficiency becomes very important for new vehicles. Therefore, improving the aerodynamics of tires has started to receive increasing interest. While the experimental approaches are time-consuming and costly, numerical methods have been employed to investigate the air flow around tires. Rotating boundary and contact patch are important challenges in the modeling of tire aerodynamics. Therefore, majority of the current modeling approaches are simplified by neglecting the tire deformation and contact patch. In this study, a baseline computational fluid dynamics (CFD) model is created for a tire with contact patch. To generate mesh efficiently, a hybrid mesh, which combines hex elements and polyhedral elements, is used. Then, three modeling approaches (rotating wall, multiple reference frame, and sliding mesh) are compared for the modeling of tire rotation. Additionally, three different tire designs are investigated, including smooth tire, grooved tire, and grooved tire with open rim. The predicted results of the baseline model agree well with the measured data. Additionally, the hybrid mesh shows to be efficient and to generate accurate results. The CFD model tends to overpredict the drag of a rotating tire with contact patch. Sliding mesh approach generated more accurate predictions than the rotating wall and multiple reference frame approaches. For different tire designs, tire with open rim has the highest drag. It is believed that the methodology presented in this study will help in designing new tires with high aerodynamic performance.
    • Download: (3.161Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Tire Rotating Modeling Techniques Using Computational Fluid Dynamics1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278117
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorFu, Gen
    contributor authorUntaroiu, Alexandrina
    date accessioned2022-02-06T05:28:50Z
    date available2022-02-06T05:28:50Z
    date copyright7/2/2021 12:00:00 AM
    date issued2021
    identifier issn0098-2202
    identifier otherfe_143_11_111206.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278117
    description abstractFuel efficiency becomes very important for new vehicles. Therefore, improving the aerodynamics of tires has started to receive increasing interest. While the experimental approaches are time-consuming and costly, numerical methods have been employed to investigate the air flow around tires. Rotating boundary and contact patch are important challenges in the modeling of tire aerodynamics. Therefore, majority of the current modeling approaches are simplified by neglecting the tire deformation and contact patch. In this study, a baseline computational fluid dynamics (CFD) model is created for a tire with contact patch. To generate mesh efficiently, a hybrid mesh, which combines hex elements and polyhedral elements, is used. Then, three modeling approaches (rotating wall, multiple reference frame, and sliding mesh) are compared for the modeling of tire rotation. Additionally, three different tire designs are investigated, including smooth tire, grooved tire, and grooved tire with open rim. The predicted results of the baseline model agree well with the measured data. Additionally, the hybrid mesh shows to be efficient and to generate accurate results. The CFD model tends to overpredict the drag of a rotating tire with contact patch. Sliding mesh approach generated more accurate predictions than the rotating wall and multiple reference frame approaches. For different tire designs, tire with open rim has the highest drag. It is believed that the methodology presented in this study will help in designing new tires with high aerodynamic performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigation of Tire Rotating Modeling Techniques Using Computational Fluid Dynamics1
    typeJournal Paper
    journal volume143
    journal issue11
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4051311
    journal fristpage0111206-1
    journal lastpage0111206-8
    page8
    treeJournal of Fluids Engineering:;2021:;volume( 143 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian